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g PRECEDING PAGE BLANK NOT FAILMED.
Preface

The Lie series method for the solution of differential equations,
for the inversion of systems of functions, for the investigation of
the zeros of polynomials, etc., is now 10 years old. In a monograph
published in August 1966 by NASA under No. NASA CR-552, Solution of
Ordinary Differential Epuations by Means of Lie Series, the theore-
tical background (including numerical computation of e. g. Mathieu

and Weber functions) was given.

In this monograph not only practical applications of Lie series

are considered, but also a nearly complete bibliography of all work

done using Lie series is given.

A short survey on the contents of this monograph is given in the
Introduction, page 1. Futhermore, there are short abstracts des-
cribing the contents of each chapter. These abstracts can be found
at the beginning of each chapter. We treat particle accelerators,
the gravity gradient stabilization method of artificial satellites,
orbit calculations of celestial mechanics and optimization and

nonlinear control problems.

In the US Dr. Wilson, Chief, Applied Mathematics Section of NASA
was the first to recognize the theoretical and practical advantages

of the new method.

iii
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. Tntvadngting

by

A.Schett, J.7=11

This manoeraph comsrises the resesrch work done in the field of
Lie series and their physical and technical applications Anwving the se-

cond y:ar of the contract. A Lie scries is a series of the form

as) ¥ . +?'r\9f'/' ,
S p%e(a) = £(z) + tne(z) + DL L (1,1)
«=0 b '

where £(z) is any function devending cn the conplex vavizbles z,, 2,5 «o

e 2.3 D is a linear di fferential operator defined by:

y 9 ) d
D = 61(3) 3;: + 62(2) 5;; + oeee + 6n(z) a:n (1,7)

>

where the coefficients 6j(z) renresent functions of the complex variables

Zyy Zpy ees 7 which are holomorthie in a certain neighborhood of Z_ e LS

daro

to *he proof of convergence, sce Ref.1,2.

Lie serieg have becen uscd to solve differential equations of various

kinds (see Ref.1-16). Other aprlications are inversions of functional sy-
stems (see Ref.17) and parameter representations of algebdbraic manifolis
(see Ref.18). Furthermore, Lie series may be used in algebraic ceometry
(see Ref.19) and to represent implicitly given functions by means of Lie
series (see Ref.20). Generalized Lie series using higher-order operators
are trezted in Ref.21. 4 very interesting example of the usefulness of
Lie series is its application to the Hamilton-Jacebi theory (see Ref.2,
Chapter IV). Their physical applications comprise many problems of techno-

logical and theoretical gignificance. F.CAP and J.MENNIG (sce Ref.22)

*Extensive tables of numerical results for Chapter VI are available upon request from

Chief, Applied Mathematics, (RRA), Research Division, OART, NASA, Washington, D.C.
20546
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.

and F.CLD 2nd A.SCHLYT (sce DRef.22) have sclved initial anc houadary ‘
value problens, respectively, occuring in rcactor tlcory. The "Three- r
Body Prohlem Earth-lioon-Spaceship" was treated by ¥.CROITIER and FP.CALD
<sre Ref.ZS), the "Perturbation Theory of Celestial liccranics Using Lie
Series" by W.GROEBNELR and F.CAP (sce Ref.26) whereas a paper by W.
GROEZNZR 2nd I.RAAB (see Ref.27) was ccncerned with rocket orbits in the
field of several gravity centers (see Ref.27). The investigations of
H.ENAPP are of fundamental importance for the attempts to improve the
convergence (see Ref.28,29). Further boundary value problems were trecated
by G.WANNER (see Ref.3,38) and J.MENNIG (see Ref.30), who is particularly
concerned with neutron flux problems. Many of these references are also
cited in a summary volume covering many works on Lie series done by the
Department of Mathematics of the University of Innsbruck (W.CROIBNER),
edited by W.GROEBNER and H.KNAP? "Contributions to the Method of Lic
Series" which appeared recently. As to further physical applications,

we refer to the jsroblems stated in the monograph of the previous contract:
"Solution of Ordinary Differential Equations by Means of Lie Series",

J4SA Contractor Report CR-552, 1966.

The present monograph is concerned with the following problem:

Chapter I presents "The Solution of a System of n-th Crder Differen-
tial Equations Using Lie Series", an extension of the considerations on
second-order differential equations of the past year.

Chapter II is concerned with the Laplace equation; in the course of
these investigations WEBLR, HEINE, WANGERIN etc, functions were formally
reypresented by Lie series.

Chapter III gives a physical application of great significance in

high-energy physics. Lie scries are used to calculate particle orbits in




L]
<

circular accelerators.
>

Y  Chapter IV gives another physical application. Covering older

work, it gives a survey on the application and the advantages of
the Lie series method in celestial mechanics, especially, it deals
with the numerical computation of satellite orbits using Lie series
and compares them with other current methods.

Chapter V is devoted to an optimization problem. The Euler-lLa-
grangian equations of a fuel minimizztion problem connected with
soft landing on the moon's surface are solved with the help of Lie
series. A discussion of related problems is annexed.

Chapter VI deals with gravity-gradient stabilized satellites
whose equations of motions are solved by means of Lie series. In (6.1)
the general theory is developed and the equations of motion of a
spinning satellite about its center of mass are derived. In (6.2)
the equations of motion of a gyroscope are solved. In (6.3) problems
of numerical evaluation of these solutions are discussed. In (6.4)
some aspects of our numerical calculations are considered. (6.5)
deals with some more papers.

Further applications of Lie series in physics and engineering

can be found in the papers quoted under the References.,



Chapter I

The Solution of a System of n-th-Order

Differential Equations Using Lie Series

by F.Cap and D.Floriani

Abstract: In the present work, the solution of a system

of n-th order ordinary differential equations which is
(n)
Q

means of the Lie series as introduced by Groebner. For

golved for y =-fQ(x,y,y', coe y(n“1)) is obtained by

this purpose, the concept of a "Lie series” is defined

initially and some important properties are quoted. In the

third part, the system of equations is solved.

(1.1) Definition of Lie Series

We shall introduce a linear differential operator in the follo-

wing way:
n

i)
D: = };:Fq(zo, Zys eees zn). re (1,1)

Q

The FQ are assumed to be holomorphic functions of the complex variables
Z,1 ...,zQ. If this operator is applied to another holomorphic function

f(zo, cee zn), we have
g(zo, s0 0y zn) == Df(zo, e oy Zn)
which is again holomorphic. The same holds, of course, if D is applied

n times (in the same domain of holomorphy).

¥With the help of this operator, we may formally set up an infi-

nite series

k
Y L Mg, 7y eees 3 (1,2)

[+



which will be written symbolically as

" ¢%0¢(2) = (exp D) £(z) (1,2a)

in the following. The series defined in this way have some properties
which enable them to become valuable tools in several fields of ma-

thematics.

(1.2) Properties of Lie Series

(1.21) Absolute Convergence

It is shown in Hef.t1, p.7, theorem 2, that, if G is a finite
closed domain of the z space in which f(zo,...,zn) and D are holomorphic,
& number T> O can be found such that the Lie series (I,2) converge ab-

solutely and uniformly in the whole of G. The function
tD
g(t;zo, ceey zn): = e f(zo, ...,zn)
is, therefore, holomorphic in t, Zos sy 2o

(1.22) Differentiation

By virtue of this convergence property we have

. © .k o .k
%; g(t;z) = %? E;:.%T . Dkf(z) = %T . Dk+1f(z) (1,3)

since the series (I,2) may be differentiated term by term with respect

to t.
Furthermore we have

o .k tk

3 3 = K 3 .k
57 &(ts2) =5 > 37 . Df(z) = %7 c 3z D f(z) (1,4)
Q QO [9) Q

since the series on the right-hand converges uniformly (Proof:

Ref.1,p.7).



(1.23) Commutation theorem

The proof of this theorem is here briefly sketched, on account
of its significance.
It is easily shown that

n

D( Z aQ-fQ(zo) sesy zn)) = ;aq'DfQ(zo’ --*:zn) (115)

[¢}

(with 2, being constants) and, generally,

n n Kk
Dk(Zoaq.fq(zo, vees 22)) =ZoaQ.D fQ(zo, eesz) (1,6)

for any natural number n.

Furthermore, the validity of

k k k Q k-0
(£ (2) £,(2)) = 3 () (0%8,()) - (0 e2p(a) (1,7)

follows from the usual rules of differentiation, where again z is

written ingtead of Zoy Zya eserZpe

With this we have (see theorem 5 in Ref.1):
n n ‘
tD — tD
e a .f (z = a .e f (z 1,8
SEEXCIEDSEREE XD (1,6)

tD tD tD
(s (2).1,(2)) = (%P2, (2)). ("2, (2)) (1,9)
In particular, it follows from (8) and (9) for a polynomial:
tD, o tD a tD tD
e (z:aQ.zo.zﬁ. ....zg) =E:aq.(e zo) .(e z1)B. oo ofe zr)Q (1,10)
or briefly:

tD tD
e P(zo, Z, ...,zr) = P(e Z s



‘

>
~ As is shown in the general comuutation theorem for Lie series, this
equation holds for any functional relaticnship.

The funtions

tD
p

ZQ(t; Zor Zqo ..;,zn); = ¢ ¢

(I,11)

that are holomorphic in t and 2oy v z, are introduced. From it fol-

lows:

ZQ(t=O;zo, ceey zn) = 2.- (1,12)

We have then (theorem 6 in Ref.1):
If for a holomorphic function F(z) the power series expansion
valid at the point Zor Z4s eee9Z CONVETZES also in Zo’ Z1, ...,Zn
(which will certainly be the case for sufficiently smallIZ_ - 3 l,
N &

i.e., for sufficiently small t), we have:

+D tD £D, y
n

€ :(zo, ""Zn) = (e Ty eeese = F(Zo, ...,Zn) (I,13)

This follows for polynomials from (I,10). Let Fn(z) be the nortion of the
powcr series for F(z) up to the degree n. We then have because of the

Presupposed holomorphy:

lim F (z) = F(z) lim £ _(2) = F(2)
. 0 0r(z)
lim aZQ Fn(Z) = 07 (1’14)

lim Dan(z) DkF(z)

]

For n - oo. Because of {I,10) we have

R
F (2) = 37 + D (2) (1,15)

Since a majorant exists for F(z) the right-hand series convergze unifermly

with respect to n, i.e., we have;



ok k

. % k t .k

11m§ T - D Fn(z) - 37 - lim D Fn(Z) (1,16)
o [0}

and with (I,14) to (I,16):

@k S K
F(z) = lim F (Z) = llm;ﬁ . DF (2) SL—OI{T . 1lim D Fn(z) =

k
,f% . D°F(2) = eDF(z)

forn =20.

(1.3) Construction of the Solutions

Let be given a system of differential equations:

(n)

yQ = fQ(x’y,y" oou,y(n-1)) (Q=1,..,I‘) (1,17)

with holomorphic functions fq.y,y', eee is here symbolic for Ygr yé
with 0=1, «..,r. (I,17) can be represented by an equivalent system of

firgt-order differential equations:

g1
z2,: = X Zo,0° = yg ) (0-1, «.., n) (1,18)

' = = *e0 e -
ZQ,G zQ’d+1 for o=1, , n-1 (1,19)

)

z! = fQ(x,z

Qs Q

This system (I,19) is now solved by the Lie series which is formed by
the operator

- 9 9
D - <2 Z[‘; 2 g - Tt L T ] (1,20)

o Q Q0 Q.

With 6=1’oo.,n"1 and Q=1,...,I‘:

o .k

90 tD t k

—at (e ZO) =Z_k! « D (DZO) = 1 (I,21)
[o]




Q;\'_Y+1
S LS R P ) - et (o)
ot ¢’ = — 1! Zon/ =€ P \E

(follows from (I,3). With

. tD = . lalks}
Zy: =6z =z + % ZQ’G. =er g (1,22)

(I,21) can be written in the form (because of (I,13):

o
0t Zo(t,Z) =1
Sz (t;2) = 2 (t;2)
ot AR o+t ?
g (t;,2) = £ (2)
0t “¢,mt ! <
or
[¢]
5T 2 (t;2z) =1
oh
— t;2) = £ ¢
o 1(852) = £ (200 2 o)
or, in terms of the original variables:
{g-1)
= = A
ZO =X =2z + t, Zx,d 3&
.n
_G___a_ 2._ - - - e ! ,(n'1)
0t - ox N yQ(,{,Z) = f&'(k’u V) ).
.n
(I,21) is thercfore identical with the original systenm (1,17), since 2 =
n 0x
may also be written as 0 if they are understood to be parameters.
dx

Consequently, the solution of (I,17) reads:

x(8) =2+ 1, g (1) = o or g (x) - e(x=25):0, (1,03)

‘("1 X X



»
4

’

where (see (I,12)) the =z are the initial values of y\d_1) for t = 0:%
\ Y

k’d
F7 (e0) < T ey < (1,24)

Using (I,23) and (I,24) the problem of s=olving (I,25) with the initial

conditions y(6-1)(0) = 7 g has been accomplished.
3 ’

10




Chapter II

On the Solution of the Differential Equations Resulting

from the Separation of Laplace Equation in Various Coor-

dinate Systems

by F.Cap and A.Schett

Abstract: First the R and S-separability is discussed,
then several functions (Weber functions, Bessel functions,
Baer functions, Mathieu functions, Legendre functions,
Lamé functions, Wangerin functions and Heine functions)

are formally presented by Lie series.

The Helmholtz equation
2
AQ+uQ =0 (11,1)
and the Laplace's equation
A Q=0 (11,2)

have a great significance in physics. Thereare many equations, impor-
tant for physical and technical applications, which reduce to Helmholtz

equation if time dependence is separated. These equations are i.a.
1) The diffusion equation:
vrzq 19
h2 ot
This type of equations appears, f.e., in heat conduction theory, diffu-
sion theory and circulatory motion theory.

2) The wave equation:

|~

2 1
A Q =
V 2

»
N

t

11



72) The damped wcove ennctions N
v
2 1 6” Ay
« =5 5 + R
V Z o ot

o
2 19~ Gl
Pho-Lireadies
¢ ot
5) The veetox wave equation:
2
23 . 1_o2
V 273
e

The equations enumerated under 1) « 5) describe quite geanerally the pro-

pagation of wavcs.

The Laplace ecuvaticn ocenrs, f,e,, in elagiicity thenry (s{:ess provlenms,
tortion problems, .distortion problemes, thermal cliusticity probtlems =.¢
in potential theory and in .ctential flow protlems. Concrining the separa-
rility it is well-Mnown that these equations can be zaparated in spcceial

coordinate systemc. One distinguishes k »nd S separsbility.

v

S-separability: If the assumption

~
]

U1(n1) . Uo(nz) . U3(n3) (11,3)

<&

permits the separation of the partial differential equations (II,1) and
(II,Z), respectively, into three ordinary differential equations, th
equation is said to be simply separadble or S-senzrable.
R-separability: If {lhe asssumption

U1(n1),U2(n2).33(pj)
= R(n1, N, n3)

permits the separation of tlie partial differential equations {II,1) and

2 (11,4)

12




A4

(11,2), rcepectively, into three ordinary differential eguations, and
“

(W
o)

R = const., the eqnation is said to be R-separablc. The quantity R
iz Jd¢fined in Ref.31.
No case is known in which the Illelmholtz equution is R-separable,

so the question that arises ic merely whether the Lajlace ecuation is R

17 -
Pes

&

sevarable in some coordinate cystems. In the following table we list the
R and S separability of the Laplace and He¢lmholtz enustion, respectively
in various coordinate systemz. We rectrict ourselve to the well-known 11
coordinate systems in which the Helmholtz equation is serarable and the
most important coordinate systems with regard to technical Jredblers in

which the Laplace Bruztion is R-separable.

In Table WIS indicates S-separability

n

R n R~ "
X

non-separability

13



T ."‘.BLE I ) 1 )
v
AQ + ut = 0 A-~< =0
ot @ \ (
Coordinate System k\1'111'121'1.5) k(n1n2) H(.11n2n3) g\n1n2)
1. Rectangular Coordinates S S S S
?. Circular-Cylinder
Coordinates S S S S
3. Elliptic-Cylinder
Coordinates S S S S
4. Parabolic-Cylinder
Conrdinctes S S S S
. Spherical Coordinates S S S o
6. Prolate sphercidal
Coordinutes o S o S
7. Oblate s»heroidal
Conrdinuatesn o S 3 S
8. Parabolic Coordinutes S S S S
%. Conical Conrdinates o ) o o
10. Ellipsoicdal Coordinates S S S 3
11. TFaraboloidal Corrdinates S S S s
12. Tangent-Cylinder
Conrdinates X X pA )
13. Cardicid-Cylinder
Coordinntes X X X S
14. Iynerholic-Cylinder
Cnr»dinates X X X )
15. Rose Coordinates Ve pie hie S
1. Cas<ian-0val
Coordinates X X X S
17. Inverse Cas~ism-Cval
Conrdinate= X X e S

14




A

18, #2i-Cylindrical

-~

19.

21.

22

23,

24.

25.

26.

28.

29.

31.

32,
33.

34 .

35
36.

37.
38.

Coorlinates

zxwell-Cylinder
Coordinates

Logarithmie-Cylinder
Coordinates

In tang Cylinder
Coordinates

In cosh Cylinder
Conrdinates

sn-Cylinder Coordinates
¢ri~Cylinder Coordinates

Inverse sn-Cylinder
Ccordinates

In- sn-Cylinder
Coordinates

In cn-Cylinder
Coordinates

Zeta Coordinates

Tangent Sphere
Coordinates

Cardioid Coordinates
Bespherical "
Toroidal "

Inverse prolate
spheroidal Coordinates

Inverse oblate spheroi-
dal Ccordinates

Bi-Cyclide Coordindtes

©1at-Ring Cyclide
Coordinstes
Disk-Cyclide Coordinates

Cap-Cyclide Coordinates

X

15
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Ve
FiS

X

b

R

2o}

n

L2

2

[2¢)
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All differential equations which result from a separation of thé Heélm-
holtz equation are special cases of the Bbcher equation. Initial value .
problems of this general equation were solved by Lie Series in Rep.2
and Rep.3 under the Contract NGR 52-046-001. Special cases were treated
in Rep.7 and Rep.8 under the same Contract and in Ref.16.

The differential equations which result from a separation of the
Laplace equation are also contained in the BOcher equation. It means
that for initial value problems these ordinary differential equations
are solved too. Here we enumerate for the sake of completeness the
types of the differential equations resulting from a separation of La-
place's equation in various coordinate systems. Concerning the solution
of different types we refer to earlier report under the Contract NGR
52-046-001, if the equation is treated already or shall solve the equa-
tion for initial value problems, if the equation is not investigated in
earlier reports already. We emphasize, Lie series can only be used to

representate functions in regular domains.

(2.1) Types of Differential Equations Resulting from a Separation of

Laplace Equation in some Important Coordinate Systems QBQ(n1£2£3)
Type 1: Z"(t) = c2(t) = 0O (I1,1)
¢ being a constant. This type appears in:
rectangular coordinates, cardioid coordinates,
circular cylinder coordinates, bispherical coordinates,
elliptic-cylinder coordinates, toroidal coordinates,
parabolic-cylinder coordinates, inverse prolate spheroidal coord.,
spherical coordinates, inverse oblate spheroidal coord.,
prolate spheroidal coordinates, bi-cyclide coordinates,

16
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4

oblate spheroidal coordinates, flat-ring cyclide coordinates,
-

parabolic ccordinates, disk-cyclide coordinates,

tangent-sphere coordinates, cap-cyclide coordinates.

This type is already treated in Rep.7.

Type 2: 2"(%) + ¢ 2'(%) - (25 +¢) z(t) =0 (11,2)

a, b, ¢ being constants. This equation appears among the equation of

circular cylinder coord.(a = 1), spherical coordinates,
parabolic coordinates, conical coordinates,
tangent-sphere coordinates, cardioid coordinzates.

Eq.(II,2) is alrecady treated in Chapt.IV, Ref.16.

Type 3: Z'(t) + (a + bt°) 2(t) = O (11,3)

2q.(II,3) appears among the equations of parabolic cylinder coordinates.

For the solution of this type see Chapt.IV, Ref.16.

2 2
Type 43 Z"(%) - (ap + aza” cosh t) z(¢) = 0 (11,4)

Uo s az, a being constants. This equation results from a separation of the
Laplace equation in elliptic cylinder coordinates. For solving this equa-

tion see Chapt.IV, Ref.16.

% - a, - -—fé——) z(t) = 0 (11,5)
\ 2 . 2 = ?
ginh %

Type 5: 2"(t) + coth t 2'(t) + (xZa’sinh

Ky 8y Uy, a3 being constants.
This equation appears among the equations in
prolate spheroidal (a=0) coord., toroidal (a=0) coordinates,

inverse prolate spheroidal (a=0) coordinates

17



Type 6:

)
Z"(t) + cot t 2'(%) + (uzazsinzt + o, = —fzg—ﬁz(t) = 0 (II,%)
sin 't
ny 8y Gy a3 being constants.
This equation results from:
spherical (a = 0) coordinates,
prolate spheroidal (a = 0) coordinates,
oblate spheroidal (a = 0) coordinates,
bispherical (a = 0) coordinates,
inverse prolate spheroidal (a = 0) coordinates,
inverse oblate spheroidal (a = Q) coordinates.
q.(11,6) was investigated in Chapt.IV, Ref.16.
Type T:
z2"(t) + tangh t 2'(t) + (u2a2cosh2t -, + ——aiz—) z2(t) = 0 (11,7)
cosh t
My 8, Uy, a3 being constants. This equation results from:
oblate spheroidal (a = 0) coordinates,
inverse oblate spheroidal (a = 0) coordinates.
The solution is given in Chapt.IV, Ref.16.
Type 8: 8262 (v%4%)) (n2t4+azt2+a2) |
2'(t) + 5y 2M(8) + e 2(8) = 0 (11,8) |
(t7-57) (t7-c") (£7-p7) (t7-c")

b, ¢, %, oy a3 being constants.

This equation appears among the equations in
conical coordinstes,
€llipsoidal coordinates.

For solving Eq.(II1,8) see Chapt.IV, Ref.16.
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Type b:
3 2,2
. t to t-a
. . 1 (2t-(b " 2
2" (%) + 5 5% :fc 2' () + rmpyre— a(t) = 0 (11,9)

h, ¢, u, Upy Gz beinz constants.

E7.(II1,9) results from a separation of the Laplace equation in parabo-
loidal coordinates. The solution for initial value problems is given in

Chapt.IV, Ref.16.

Type 10:

n _1_ 1 2 } l
70 (t) +[2 P T t-as]z'(t) .

b +b, t4b b b 57

(t=ny)(t-a,)° (t-az)°

o

where k, g, Az 85, bj being constants (i = 1,2,3; j = 0,1,2,3)

The golution functions of Eq.(IT,10) are Hecine functions (Ref.31).

WL loe

D
Let a; = C, a, = 1, az = 1/k°,

o

2 2
bO = e '-_2" b2 = (0(2+2) + ?k
k
s azk'4 A
by = (ay42) + =5 - ——— by = 2k
k k
0¢< k2 ¢ 1 0¢ k'2¢ 1 and t = snzg

then one obtains the equation

sni(ﬂn?g +kzcn2§)

A (g )
. (A
cnx dn?
J
wvhere the Jacobi elliptic functions:
en - sinus azngditudinis
cn - cosinus smplitudinis

dn - delta emplitudinis

19
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-
. . . . 4
Eq.{II,1Ca) resulte from 2 scparation of the Larlace equution in hi-

crelide coordinates. Cbvicusly the solution functions of Zq.{(II,1Cz) .

are Heine functions (see Ref.31).

2
Let a, = 0, a, = 1, a3 =k
2 { 2 ,2
bO = -azk b2 = —\a2+— - 21
2 )
b, = (a2—a3) + & (ay+2) by = 2
and
t = dnzg

we obtain from Eg.(II,10) the egquation

dn§(cn2§ —snzf) 2 (
sngcnf

which is again solved by Heine functions (sece Ref.31).

dn2§

5 sn2§ anf

;) + -2dn2§ v, +oa z(§) = 0 {I1,10b)

Eq.(II,10b) appears among the equations which one obtains by sepesrztion
of Laplace's equation in bi-cvclide coordinates. The general solution of

2q.(II,10) is given by

z(t) = 4% (%) + BX,(¢t) ‘ (I1,11)

whereB%_(i = 1,2) are Eeine functions.

For regular domains we can solve Eq.(II,10) by Lie series. As Eqs.(II,1Cz2),
(II,10b) are special cases of Eq.(II,10) we have only to treat Eq.(II,10).
The solution representation for initial value problems is given in Chapt.II,
Ref.16.

The solution reads:
) v =2 s
72(%) = f’—,nvz1 - 2: = ﬁ -2y
S ) D= reere Q

. f‘l(!)(ZO)D'J-1—&Z1 + ng)(Zo) D\’-Z-QZ‘] + Z1 + tzz (II,12)
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.Th% 6perator D is given by:

D 9, , O L 2
= oz 29z, T\ 2|%-a t-a, T toa, Zp *

1 2
2 3 -
b_+b, t+b,t +b b .
2
%[ = ZJ. =2 (11,13)
(t-a,)(t- az) (t-a,) 2
3
t % a9 t % 859 t 3 35
1 1 1
f1(t) = -(Z(f-a15 * t-a, * t-as)
. 2 3
b +b, t+b,t"+b t
£5() = -(2—1—2 3 -
4(t'a1)(t'a2) (t'aB)
A A A A A
= ! + 2 >+ 2 + 4 5+ 2
t-a, (t-az) t-a, (t-&3) t-a,
e, (@) . Lo N (e ()T
2(t-a )" (t-a,)¢* (t-a,)e!
3
(o) A, (-1)%! A, (=1)%(e+1)! Ag (-1)%!
£,0070(¢) = PR T Q+2 M o+1
(t-a,) (t-a,) (t-a,)
A, (=1)%(e+1)! Ac(-1)%(e)!
. 4 =2 (11,14)

+2 + 1
(t'as)Q (t_aB)Q+
Eqs.(II,12), (II,13), (II,14) solve equation (1I,10) for regular domains.
Another solution representation derived in Chapt.II, Ref.16 reads:

7, (%) !

1 € 0] z

=T, T
Z,(t) @) 0 e z
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t
o) o Z
t-1) o 1

- 9]

The integral can be evaluated by an iterative method according to Ref.20.
The symbol a added after the bracket is to indicate that after applica-

. : . t D4 tD4
tion of the D-operators Zyy 2o have to be replaced by e z, and e %5

respectively. 4, ., Az, T and D2 in Eq. (II,15) are civen by the relations:

]
£ £2
1 + 1
Moo= Tt 5
(11,16)
£ £,
A Ao
d
Dy =32
[o]

Eqs.(II,15), (II,16) solve Eq.(II,10). If the initisl values Z(t=t_) and
Z'(t:to) are 5iven, the solution of Eq.(II,10) can be evaluated for rec-
cular domains.

The values Z(t:to) and Z'(t:to) can be looked np in tables.

The question arises how we can compute the Ieine functions by Lie scries
y

representation Eqs.(II,12), (II,15).
The genexral solution of Eq.(II,10) is given by

z(t)'= 521(t) + Bd%(t)

A and B being arbitrary constants,éﬁ1 , BC2 are Ileine functions.

The solution and its derivative is given by:
z(t) = AR, + BE, = Z1(t)

2(t) = aR', + BR, = Z,(%)

22



W@tﬁout restriction of generality we may choose:
Z(t:to) =ae1(t=to) = Z1
Z'(t=t,) =&, (t=t]) = 2z,

i.e. we have put 4 =1 and B = 0. Further the equations are valid.
i v
2(t) =R () = ﬁ-;;!—n z,
)
52
z'(t) =322(t) = : 5t D2 (I1,17)

For numerical evaluation of2€1 we expand 2(t) in the neighborhood of
VAN
VD 2
V! 1
have to be calculated if the accuracy is prescribed. Since the computers
t\)D))

pr 21

t = to and choose a step size of At. As t increases more terms

have a limited numerical range, only a limited number of terms

can be calculated.

Consequently, we expand the functions Z(t) at t = to'and usin% a certain
gtep size At we calculate the function 3€1 in the rezion (to, t1). At t1|
the functionag1'will be expanded again. Continuing this method, we can

compute €, 2anad 38'1 for regular domains.

1
In an analogous way one may calculate the function u% by means of Lie
series. Concerning the important problem of error estimation of the solu-
tion representations Eq.(II,12) and Lq.(II,15) we refer to Ref.14, 29.
G.IIAZSS treats in Hef.14 an error estimation, which may perhaps be used
Tfor numerical computation of Eq.(II,12). As we have never used this me-
thod, we cannot decide, wether this error estimation is suitable for nu-
merical cvaluation of Eg.(II,12).

H.CIAPY discusses in Ref.29 the error estimation of the representation

2q.(II,15). The usefulness of this method was already proved by numerical

23



calculations (see Ref.29). J
. v L d
ihether Eq.(II,12) or Eq.(II,15) is more advantageous for computing the

solutions can only be decided by help of a computer.

Type 11:
1 1 1 2
2'(8) + 3| T30t T, * Eea ] 2 (%) +
1 2 3
2
bo+b1t+b2t

4 (t-a1)(t-a2)(t-a3)2

Z(t) = 0 (11,18)

where ays 29y a3, bo’ b1, b2, b3 being constants. The solution functions

of Eq.(II,18) are Wanperin functions.

2
Ifa, =1, ay = 1/x°, az = 0
[0 4
o, = -2
° Xk
e (11,19)
b, = —— 11,19
17,2
; b2~=1—0(3
and
t = snzs

one obtains frean Eq.(II,18) the equation

cnt. dn
Z"(j) + ——5——5——3 Z“(t) +

+[ k23n2§ - cxz - ds(kzsnzg + ‘2 )] Z(S) = Q0 (II,‘]Sa
sn g
Ik, Cos a3 being constants

cn cosinus amplitudinis

sn sinus
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. dn delta amnlitudinis

This cquation rcsults from a senaratlion of Leplace's equaticn in

fl=t-rin: conordinates,

can-cvelide cnordinates.

2l

By the transformation t = cn“? one obtains with Eqs.(II,19) and &q.(II,18)

the differential equation

snydn
-2 g,

2
2 2 -
+ [k sn § - a, + aB(k2cn25 - L'O )] Z(g) -0 (II,18b)
cn”S
ifay =1, a, = - (E—- y az = 0

2

b = (k'/x)
2 2

b, = (ay-k")/k

b2 = (13-1

This equetion aprears among the separated Laplacce equation of disli-cvelide

coordinates.

2
p =1 oa, = -(k'/K)

o~ aS
by = (X1Pey) /i
b, = 1-c ’1.'/b)
and
t = cn2§

one obtains from (II,18) the equation

Zn(;) :%%%iﬁ zn(j) *.[_,dnzs + oo, + “3(k' cnés - ki )JZ = ¢ (I1,18¢)
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This eguation arcars among the scoarated
Y PO O -

coovrdinates.

If a1 =1, ay = k-, a3 =0
bo = —GBI‘:
b1 = —82
b, = 1-
3 *3
and
- 2
t = dn s

one obtains from the origin equation (II,18) the equation:

r

'

z"(§) -

flat-ring coordinates,

cap-cyclide coordinates.

Eqs.(II,18a), (II,18b), (II,18¢c) and (II,184) are solved by .

tions.

——E;%z—;i Z'(?) + [—dn2§ + oy + aB(dnzg + p

2
-;égﬁlz(j)

This cquation results from a separation of the Laplace's equation
i & 'Y

Lonlacc eguations in i

L4
’

gh-cycljice

JATLY

~erin func-

The above enumerated equctions .are special cages of Eq.{(II,18). Therefore

we have only to sclve 5n.(II,18).

For recgular domains we can representate the solution by Lie

gseries.

Tor this case the sclution is given by (II,12?) and (II,15), respectively.

The operator D reads:

PRI SRR 1
N Dzo "2 3z 2 t-a1 tIa

1

b +b1t+b t

1
4 (e- a1)(t-a?)’t—a3)2

for t 4 ay, t ¢ 8o t 3 33
!

26
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. 1 1 1 2
£,(8) = -5 ( t-a, + t-a, + t-a, )
2
1 bo+b1t+b2t
fz(t) = - 7 2 =
‘ (t-al)(t-az)(t-a3)
A A a A
2 3
-l = 5+ —2 (11,21)
t-a,  t-a, (t—aB) t-ay
A1, AZ, A5, A4 being constants.,
RO G AN B E) LTI D L
1 B v+ +1 +1
2(t-a1)Q 2(t-az)V (t_aB)u+
\ +1 +1 \ 1
() F G D T N W DA T R D LA
£4%7(t) =. — + —— -~
(t-a1>‘ (t—a2)Q (t—aj)Q
ag (=)t
+ (11,22)

2
(t'aB)V+

With Eqs.(11,12), (II1,15), {11,20), (II,21) and (II,22) Eq.(II,18) is

colved and the Yon-verin functions can be computated by Lie geries. The

LL)

Lie series solution (II,12) and (II,15) of Eq.{II,18) converges within
circle whose céenter ig a2t t = to and whose radius extends to the nearest
singularity of the differential equation.

The general sclution of Eq.{II,18) is siven by
Z(t) = 4V, + 3W,

where 4 and B are arbitrary constante and W1, W, are Jangerin functions.

For computing the Wangerin functions by means of Lie series we refer to
the treatment under type 10 in this work,

In the monograph Ref.16 Weber functions and Mathieu functions were
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evaluated numerically. Results of these calculations were publighed °’

in Ref.16, Chapt.VII and Chapt.VI, respectively.

(2.2) Appendix

Legendre Polynomials

Here we show that for special differential equations the series

2{:—— D\)z0 breaks off, i.e., the solution is represented by polyno-
mials. As a special example we investigate Legendre polynomials.

We consider the differential equation which appears in the separation
equations of spherical polar coordinates, after splitting up the sin-

gularities.

(t2-1)2" + 2t2' - n(n+1)2 = O (11,23)
z(t) = f % D’z

[o.0] t‘\)—1 N
z2r(t) = S5 T VY2 (11,24)

Inserting Eq.(II,24) in Eq.(II,23) one obtains:

2 00 to-z» 5 1;\)-1 9
( -1)Z—\;—v(o-1)bz+2t Sz -
9] : [ ’

so that

28
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-~

if v-2 = y one obtains
D

v % gé g "
t v v+2)(w+1) w2 i}
E;: ;ﬁ'{y(v-1) Dz - o o D"z + 2pDVYz - n(n+1)Duz} = I1,24)

Necessary and sufficient that Eq.(II,24) is valid is the relation

Mz {(u—1)u + 2V - n(n+1)} - ™% - 0 (11,25)
or

V2, - Ve {(v-1)u + 2 - n(n+1)} (11,26)
1f D%z and D1z are given one can czlculate all g by Eq.(II,26).

Forv =n it follows

L (n2 -n+ 21 -n° - n) D’z = ©
_ +V
This means, the series TF.DvZ breaks off, in other words we have
= !

polynomials.

Il

i.e., the relation is valid:

n tv 9
Z(t)=:WDZ=Pn
o

n ]
For computing Pn by the series EE: %T DYz we need the initial values
5 !

2(t = t_) and 2'( %

to) or

v).

P (t = t,) and P'(%

-

In analogy one can obtain other polynomials.
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Chapter III

Numerical Computation of Satellite Orbits

Using Lie Series. Comparison with other Methods.

by H.Knapp

Abstract: A survey (reprinted) on the application
and the advantages of the Lie series method in ce-

lestial mechanics is given.

Using the Lie series theory the formal solution of the astronomical
n-body problem in a region where no collisions take place, is easy.
It could be demonstrated by a special example (J.Kovalevsky chose
this example to test the Lie series method for celestial mechanics)
that after the transformation given by W.Groebner (see Ref.1) the
Lie series converge so rapidly that the method in its present form
can be successfully employed for calculating the orbits in celestial
mechanics. This method of solution is particularly flexible and very
general, and good estimates can be given since the theoretical ex-
pansions and estimations can be directly applied to general multi-

body problems.

(3.1) Presentation of the problems

(3.11) Preparation

(3.111) Coordinate system: Our calculations are based on the following
coordinate system: Let the center of mass of the three celestial bodies
be the origin. Due to the vanishingly small mass of the 8th moon of Ju-

piter, it lies on the connection line Sun-Jupiter. Let the x-axis in-
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.éicate the direction of the ascending node of Jupiter for the year
1950, let the y-axis be rotated in the direction of Jupiter motion
by 900 relative to the x-axis in the Jupiter orbital plane, let the
z-axis be directed such that we have an orthogonal right-handed sy-
stem. This coordinate system is then assumed to be an inertial sy-
stem since only in such a system Newion's law of gravitation holds
in the simple form. This may be regarded as fulfilled within the
accuracy of calculation required here (up to and inclusive of the
9th significant figure of each step).

(3.112) Designations: For reasons of simplicity we use vectors, thus

e.g.

b3
]
r—’-«
o}
~
N
——

ig a pogsition vector

is a velocity vector

=3
]
-
=4
<
]
(g

X U = Xu + yvV + 2w ig a scalar product
1
| x| =1/;2 + y2 + z2 is the absolute amount
L; 3]: {yw-zv, ZU=-XW, xv-yus is the vector product
o (o o a8} . .
7% = 13x%? oy’ oz j is the gradient symbol
E.g.

3 2: = u o + Vo + W

ox ox 0 0z

Furthermore, we use the following designations:

Sun Jupiter 8th moon

P -» > 3

position vectors x3 X, X,

. . -> - -

velocities u5 u, u,
m es

ass M3 M2 M1

mass numbers m5 m, m,

f is the gravitational constant and m, = fMi holds.
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All quantities occuring in our calculations are assumed to be
differentiable. The three celestial bodies, the Sun, Jupiter and its
eighth satellite are assumed to be replaced by mass points which
are subject to gravitation according to Newton's law.

The positions and velocities

2,(¢) = 2,0°) and  2,(t,) = 3,(°)

of the three celestial bodies are given for the initial moment t = to.
The 18 components of the vectors 21 and 31 (i = 1,2,3) are to be de~-

termined as functions of time such that the mass points move according

to the laws of a three-body problem.

(3.113) Units:

Unit length 1 L = 1 astronomical unit = 1495,04200 . 101Ocm
unit time 1 d = 1 mean solar day

unit velocity 1 Ld"1

unit mass 1 u = mass of the Sun

In these units the gravitational constant f assumes the numerical value:

£ - 0,29591220828559 . 100, 11372 %)
mass numbers: m3= 0,295912208 . 1C-3L3d“2
-6

, 13472 - m, : 1047,355

3

my= 0 (vanishingly small as compared to m, and ms)

(3.114) Equations of motion of the mechanical system: According to the
general theorems of mechanics we obtain the following system of diffe-

rential equations for the three-body problem (see Ref.1,p.T1):

x) This and all other numerical values are taken from a paper by
J.Kovalevsky. Since we are concerned with the explanation of the method
rather than with the values themselves the problem of their accuracy is
of minor importance.
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i =%
. . (i =1,2,3) (III,1)
R S 1
i Mi axi
with
M. M
U"Zfrlk riks‘;l-:kl
ick ik

(the dot denotes differentiation with respect to the time %)
Let the operator belonging to the differential equations (I1I1,1) be

designated by D;

Since m, = 0 it has the following form:
" s =2 > 3
D 3 ) + 3 9 + 3 C + m2(x2-x1) + m3(15 11) d +
=" 57 2 3% 3 O, 3 3 od
1 2 3 r r 1
12 13
n,(3,-%,) 5 mp(E-%)
+ , + (111,2)
3 ot 3 aﬂ3
23 23

(3.115) Known integrals of the system:

Law of conservation of energy

(111,3)

1 22 » 2 :

Epin * Epot -3 (M2u2 + M3u3 ) + U = const., since D(Ekin+Epot

Law of conservation of angular momentum:
> > 3 9 .

B - M2 [xz.uzj + M3 [xs.u5 ] = const., since B -0 (111,4)
Conservation of center of gravity:

=2 1 - -\ .

Xg = o7 (m2x2 + m3x3) with m = m, + mg
is the position of the center of mass of the three bodies.

. 2

Since D 2. - 0 and owing to the gpecial selection of the coordinate

S
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>
system Xg

= 0 is valid for all times (See Ref.1, p.75): the center of ¢
gravity rests in the origin of the coordinate system. Hence we have:
m ;2 + m ; = 0

2 373
¥ =0 and 4. =0 or: (111,5)

The nine components of the vectors ;S’ i P and the constant energy

s?
(111,3) are the 10 algebraic integrals of the problem. With these 10
relations between the 18 unknown components of the vectors zi and 3i
(i = 1,2,3) the number of unknown functions could be reduced to eight.
In our example the conservation laws for energy and angular momentum
refer only to the partial problem Sun-Jupiter and permit its complete

integration. With the aid of (III,5) however, the six unknown quanti-

ties can be easily eliminated and the motion can then be described by

only two position- and two velocity vectors: %s and 2m’ 35 and 3;.
(3.116) Transformation of variables:
% -x, -3 3 -3, -3
s 73 2 s 3 2
: -% -2 3 o-3 -3 e
m - X 2 m -3 T Y
Due to (III,5) this transformation is always reversible:
m m
2 3= > -> 3 -
*1="m Xgt* Yy =-m Yt Yy
m m
- 3 = > 3=
X, = - 2% X, Uy = - == (111,7)
2 23 2 2z
3 m s 3=m Ys

The converted operator (III,2) has the following form:



m

D 3 2 + 3 0 - L % 0 - 2 i 0 +
s axs m axm ‘2 |3 s duS lz |5 m aum
s m
> 2 2
xs-xm xS 0 ( )
+ m - III,8
IE NN T
s m ] m

(3.12) Formulation of the problem

We now have to integrate the system of differential equations

2 -2
8 s
3> >
Xm = um
1_} o m z (III’9)
P _
S 3 3 3
o m X =X X
3 - . 2 ; +m s m _ S
m l; ‘3 m 3 |i’ -3 |3 ‘; IB
m s m s

2ty =2 2y -20) 2y 20, a0
S° O S imn- O 14} sS* O S m: O m

which are to be calculated from the initial conditions gi(to) and
ai(to) for i = 1,2,3 according to the formulas (III,6).
The solution can be easily obtained by Lie series:
If f(t) is an arbitrary function holomorphic in the neighborhood
>

of t = to of the twelve sought components of the vectors ;s’ ;m’ u_,

and 3m, then the Lie series

t-t i 0 - v o
£(t) = e( O)Df () = i Sc—t—")—[n"f:‘( ) (I11,10)

!
v=s Y

holds.
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The superscript zero denotes that after application of the ope- a

rator D instead of the variable components of ;s’ 2m’ Gs and 3m the
2
components of the constant initial values }s(o), xm(o), 38(°) and Bm(o)

are substituted. The trajectories are obtained by writing down this
formula for the vectors gs(t) and im(t) and by analytically continuing
the series. In this form, the solution can, however, not be used for
numerical purposes since the series converge too weakly. (This has
been distinctly shown by J.Kovalevsky in a comparison with the Cowel
method). Hence a transformation is necessary: First, we determine an

approximate orbit which is then corrected by a perturbation calculation.

(3.2) Solution of the problem

Sun-Jupiter as an unperturbed two-body problem

(3.211) Splitting of the operator: We shall now split D into two

components:

D=D_ +D (111,11)
where
<9 [*] m > a
Dy = vy 5% - ERE Xs 3 (111,12)
8 Xs 8

while the remaining terms of the operator (III,8) are denoted by D.

(3.212) Calculation of zs(t): The partial operator D out of the total
operator D will solely act, if in the place of functions depending on-
ly on is and 38, but not depending on im and Km, are substituted into

the final formula (III,10). Thus, we have, for instance,

(450D , Yo) [ (s-t)D, , (o)

X (t) = |e =3 = le % (I11,13)
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and, the problem visualized by the partial operator Ds can be solved

separately. We may say: The variables ;s and ﬁs are separated ffom

2m and 5m since they do not depend on these. - Ds is, however, the

operator of the unpertubed two-body problem Sun-Jupiter. We shall

give the solution together with the respective numerical data in (3.3).

(3.22) Construction of the approximative orbit of the eighth satellite

of Jupiter

(3.221) Further splitting of the operator: It would be most natural

to split up D in such a way that its essential part again is the ope=
rator of a two-body problem in this case of the fictive two-body prob=-
lem Jupiter - satellite. Rather voluminous intermediate calculations,
which may be a large source of accumulating rounding errors, are re-
quired for the determination of the Kepler ellipse as an approximative
orbit (particularly in the reversal of Kepler's equation!). In order
to avoid these we have decided on calculating with a simpler, although
less accurate approximative orbit.

We shall split the operator

D =D, +D +A (111,14)

The abbreviations mean

D 3 . - 022 9
m~ m d%¥ m 0g
m m
s (II1,15)
An = 6m aﬁm
where
m
2 2 .
¢ = |-> o |3 (1I1,16)
X
m
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The perturbation function gm has the form

3 -8 +3 (111,17)
m mI mII
with
2 _ 2 >
8 =m 8 m S
o DR -2f %)
] m S
(111,17a)
2 o2 . te
m_. "2 | m
II xJ

(3.222) Rough estimation of the order of magnitude of 8m:

(3.2221) If gs and —2&, respectively, are substituted in the place of

a and b in the formula

2 g 32 v
[EXTER - (@ +8) EE:: ( ) i‘TT;Fi;:gl—' (11I,18)

we obtain for gm an expansion into a series by means of which the order
I

of mangitude can be estimated more easily than by means of the expres-

sion (III,17a) for gm which contains differences of approximately equal

I
orders:
3 2 2 =7
m 3x x 3x X
- - 3 =2 _ s m s m =
gﬂl = 3 xm > 12 + o> 12 xm + seeco (III’19)
I |x8| Ixsl Ix '

If we consider the first two terms of the series jointly and observe

that
2 3282; - ya =
xm- |i7|2 xs|__2|)2m|:
8

\2;\:>4.95 L and 0.05 1< |2 |€ 0.25 L, we will have in the most unfavo-

rable case
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- 2m
g N — , X |< 1.22°107% 1472 (111,20)
m -+ 13 m
I'max Ixsl

(3.2222) 3m is less favorable to handle. If we transform Sm in
I1 II
such a way that the Kepler ellipse relations enter the formula as an

approximative orbit we find that

3

Br1

6

A 4.05°107° 1a7° . [at (111,21)

max

where At = t - to is the length of the concerned step of calculation.

However, we shall not go into these details.

(3.223) Relative orbit of the satellite with respect to Jupiter.

We shall first neglect Am in comparison to Dm, since then also the va-
riables ;m and ﬁm are separated from Es and 38. In this way, the prob-
lem represented by the operator Dm may be solved separately. The resul-
ting approximative orbit of course deviates from the true orbit, owing
to (I11,20) and (III,21). We should note, however, that extremely un-
favourable conditions have been assumed in these estimations; the fi-
gures in (III,20) and (III,21) will be smaller in general!

The solution of the systems of differential equations

> >
X = u
ma ma
4 5 o (111,22)
u = - C X
ma ma

. > d 2 0 . S s
with the operator Dma =u. 5§;: - c ;;a'ga;; and with the initial vaw-

lues

200) _2(0) ¢ 2(0) _ 2(0)

for the moment to are obtained in the form of the rather simple approxi-
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mative orbit (ellipse)

[ T T
2ma(t) - e(t‘to)Dm’xma () - im(o)cos c(t—to) + 3&0) %sin c(t-to)

L - _
aia(t) - e(t-to)Dmaumaw(O) = -2§°)c sin c(t-to) + 3£°)cos c(t-to)

L ] (111,23) ~

(The additional subscript a is to indicate that these approximative
functions, in difference from the sought exact solutions ;m and 3m of
the original three-body problem.)

The connection with time t is evident; the reversal of a Kepler equa-

tion is superfluous.

(3.23) Solution of the three-body problem by means of the given

approximative orbit; perturbation calculus

(3.231) Transformation of the solution (III,10): With the new symbol

D, =D + D (111,24)
we have
o (t-t.) T (o)
£(t) = —r | (D + & )f (111,25)

v=0

Expanding (D1 + Amf), ordering according to the positions of¢ﬁm, and
applying the exchange theorem to the Lie series one obtains the for-

mula (see Ref.!, p.92, formula (12.3e)):
£(t) = £ (%) + :;i: j illilf-ﬂamnaf(t)] dv (111,26)

a!

which is very important for the subsequent calculations. This formula
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éxpresses how the approximative solution fa(t) has to be modified in

order to yield a solution of the original problem. The expression
CoLa
[Amn f(t)]a
means thatAAmDaf has to be calculated first, and that then the com-

ponents of ;m and 3& have to be substituted by the components of the

e .2
approximative solution X () and ama(r).

(3.232) Expansion of the essential terms in the series (III,26): We
shall now substitute the required special functions 2;(t) and ﬁm(t) in
the place of the general functions f(t) in formula (III,26). - In the
subsequent numerical computation we shall have to break the correspon=
ding series and to confine ourselves to the essential terms. Of course,
the accuracy of the result may be increased to any degree if more terms
are taken into account. In the present instance, the following approxi=

mations may be sufficient:

fm(t) X (%) +

t
(t=1) gma(T)dT + i ng%lz fma(r)dt

t
RORY
t o (111,27)
t t 2
> 4 {=1)” >
1-;m(t) = uma(t) + j Sma(T)dT + J 2.; ;ma('r)d’t
) LR
with
m 2(X 8 )
> 2 > " ma na’ 9
= e ST b = -_--_—’)—‘._ X -
§ma ‘—> |3 ma l)—g E ma
ma na <
22 79
R ~3“_L‘“3jlm:&_1“?:~_’_ 22 ) {177,28)
2 .32 \5 “ma 2 .3 |3 Ve T Fual e
“'sm‘ﬁna 'J"S et

Naturally, the formulas (III,27) are of use only as 1long as the time

space |t - t°| ig chosen so small that the further terms of the series
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may be neglected according to the required accuracy. (It is obvious

that t may never be outside the region of convergence of the series.)

(3.24) Estimation of the error due to breaking off the series

(3.241) Region of validity of the formulas (III,27): We know from for-
mula (III,27) that it is the solution of the problem (III,9) within

a certain region of the t-plane. Within this region, the solution
functions constructed by means of formula (III,27) have to satisfy

the differential equations (III,9). If ?m(t) and 3m(t) are calculated

from (III,27), one obtains

Y m2 > ?
um(t) = - Ti;;z;;Tg xma(t) + gmaI(t) + R(t) (I11,29)
where
O E (e=)Pp 52*2 3 (2) | ax -
a=0 t ) a

¢ -
= ; (t-x)fma(x)dr + Z J (t=0)® AmD“+2 2m(r)J dt (111,30)
% 2t :

Comparison of (III,29) with (III,9) yields

2 (%) 2m(t) > »
+ 8 (t) - ra (t) (111,31)
I

5
1) = m -
BE) = = |§ma(t)|3 EXONK I

We shall make use of this in order to determine the order of magnitude

3
of the expression R(t). With the abbreviation

Eg(t) = % (1) - &%) (111,32)

where
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» 1 t

2(t) = t-‘c)g (r)dr+J f ;z(')d dt (111,33)
2(4) Jt< - | |1 w6

o (0]

and with the aid of formula (III,18) x) we obtain

“na” © Tma_ | "oz 20a®) o + (III,34)
"2 2 213 7 |2 3 T T 3 £- - 2 ma ’
Ixma+6| lxmal |xma| 'xmal
terms of higher, xx)
( )
order of | €|
Substitution of (III,32) in (III,19) yields
> >
e 2 "3 - 5<Xsb) 9 terms of higher
m 6ma "5 (3 ¢ 3 12 Xg (order of 7 )| (111,35)
N N
8 8
.80 that
> m2 m .
|R(t)|max%2|€'(t)| = T+ T3 . = |- 2|2()|x(+) (111,36)
12,07 12 (1)

K(t) varies between

2.107° ¢~2 (for largel ;’Eml) and 2.2°107° ™2 (for small [?cml).

By virtue of

(t'to)z b x4 '
|2(6)] ¢ —2— |z>ma(t)|mx | () nax (111,37)
x) 22 24l

ma

The series converges for-—j;——7T-<1, which is certainly fulfilled
mal

in a region where formula (III,ZO) represents the solution, when
| t-t,| = |at| is chosen sufficiently small.
Xx)

The termslinear in |€| are sufficient in estimating the order
of magnitude.
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')
and with (III,36) we obtain in the most unfavorable case the following

estimate for the order of magnitude ofl.ﬁ(t)l:

(t-to)zK(t)

1—(t-to)2K(t)

I ma t)lmax (111,38)

[80)] g

This estimate is critical for 1 - (t - to)ZK(t) = 0, which means near
the perijove for |t - t_|~21 4
near the apojove for ‘t - to‘21220 d
so that, as it was to be expected, the magnitude of the region of con-
vergence of formula (I111,26) depends strongly on the distance between
the two celestial bodies. Formula (III,26) is valid in any case for a
time space of at least 20 days.

In numerically evaluating the formula it will be desirable to chose
the interval rather long. One has to be careful, however, not to come
close to the edge of the region of convergence since then the rapid con-

vergence of the series, which is desired in practice, will no longer

be given.

(3.242) Residue of the series after the second perturbation integral;
choice of proper step length At: The comprehensive deliberations which

have been made to estimate the expression

% t 1
. [o0.¢] x
= R - -1 tT)dt = L a+2; T T
ﬁQ(t) B(t) Jtou )ma< )d §a= i ‘——La! i )‘ad

(111,39)
have shown that the step length needs never be shorter than 0.3 d if
the error due to the breaking-off of the series is postulated in one

step of calculation to amount to not more than 5.10-11 L in the case

44

-




-
.

of |2 | and to not more than 5.107'7 1a™! in the case of |3m|.
Moreover, one may conclude that the breaking-off error after the

second perturbation integral in first approximation amounts to

%
JG ﬁQ(r)dr ~ {- ﬁq(t) (I11,40)

[¢)

in the case of 3m, and to

1 T e
)
L glemtttne o

in the casge of ;;. Therefore, these quantities may be calculated at
x)

the end of each step o After this one may determine the step length

permissible at the prescribed accuracy.

In practice one will always stay somewhat below the accuracy limit,

but will calculate several steps of equal length. Only when approaching

x) The program-controlled SIE 2002 computer at the computing center of

aachen Technical University usually calculates with 10 decimal places
only. In this way one can obtain only the order of magnitude of R (t).

However, if the solution series are broken off after the first pertur-
batiQn integral and if the corresponding calculations are carried out
for R(t), one will obtain 2 or 3 figures of the components of R(t).

If in analogy to (III1,40) and (III,41) the expressions

Z ﬁ(x)drw% R(t) (I1I,402)

]

are formed, and if these quantities are added as corrections to gm
and U respectively, one will obtain improved solutions. A checking

i ﬁ(g)dg] dt = %ﬁ &() (I1I,41a)

o

calculation, also to ten digits, has shown that after 30 steps the re-
sult for X, is exactly the same as that obtained when two perturbation

integrals were taken into account. The result for ﬁm differed but in-

significantly (rounding errors), but the time required for gomputation
was only half as long! The same procedure can be made with %(t) if the
computation covers more than 10 digits.
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this limit one will reduce the step length a little (or increase it if .
the absolute amomts of the expressions (III,40) and (III,41) have dropped
below some certain value). If this is sensibly done by the computer one
has nothing to do but to adjust the length of the first step. Obviously,
this is of particular significance for calculation of rocket trajecto-

ries (when their approximate course is known, and when estimations

according to the above pattern can be made only for short sections of

the trajectory).

(3.243) Propagation of the breaking off error in the analytical conti-
nuation of the solutions: The exact result of the analytical continua-
tion of (III,26) after n steps will be denoted by f(n) throughout this
paragraph. The result involving the breaking-off errors (we shall not
be concerned with rounding errors) of the previous calculating steps

(breaking off after the second perturbation integral) will be termed

(n
? . For the error quantities

o L2 3 ()]

m
(111,42)
2 (n s> (n
o - | 5, - 2]
we obtain the recurrence formulas
pn.< (1+Pn)pn-1 +.(1+Pn)|‘ltln g * 3;
(111,43)

2 —
q, < (1+Pn)7c |At|n Pq* (1+Pn)qn_1 +q

in which'-'ﬁn denotes the amount of the error in gm at the n-th step,
due to breaking-off the series, Eh the amount of the breaking-off

error in the series for ﬁm after the n-th step.
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m m 2
s 3 3 2
p + at]
S Al TED e e
S ma ma

(i.e. the maximum of this expression in the time interval of the n-th
step calculation).

The solution of the recurrence formulas may be written straight-
forward, if a good part of the path is computed with the same step
length ]At', if the breaking off errors 31 and a; in the formulas
(II1,43) are replaced by their maximum values p and a} and if Pn is

replaced by the maximum P. Thus,

a,n a2n
p, < B,e + Bye -p
a,n a,n (111,44)
q, < 74¢ + 7€ - q
where
%
e = (1 +2) (1+|7clatl
“ (I11,45)
e 2= (1 +P) (1-V7clat])
P = [5P - 3 (1+7)|at |Jk1
- 1
k, = (111,46)
1 2 2. 2 2 ’
q = \:ap - p (1+P) 7¢2 |At|]k1 p -(1+P)"Tc |At|

Bi and y; are the constants of the general solution of the recurrence
formulas which make the adaption to the initial conditions possible.
With p* being the error of the initial data of our calculation in
|9 l * s . >

X and q the error of the initial data in Ium| we have the rela-

tions

o
By =k, [(p +p¥)e "L a ]
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[ ]
B, = k, [-(p cp%)e ! s a] (I1I,47)
[ ]

1
2(1+P)|7clatl

k2 = -
a = (1+P)[p*—+lath*1+§ +p
b = (1+P)[7c2|at|p* + q*]+ a +q

(3.25) Calculation of the perturbation integrals

It would be an awful lot of work to evaluate generally the integrals

t
J Lt—;—f)—a- [AmDaf(T)] dt (111,48)
/ !

a

occurring in (III,26). We rather go another way which yields the in-
tegrals in question with sufficient accuracy. We label the wellknown

functions

[AmDaf(T)} = g, (1) (1I1,49)

for the 4 equidistant instants of time x)

tys t +h, € +2h, t_+3h (111,50)

where

x) This is arbitrary! The functions could as well be labeled more fine-
ly (in the case of large step lengths this might be necessary; natural-
ly, the integral formula (III,52) would then have to be changed). But
since the step length has to be chosen short anyhow in order to keep
the breaking-off errors, low, and since it is evident that few but fi-
nely graded steps involve just as much work as more steps with a co-
arser grading, there is no reason to label the functions more finely
since the errors due to the chosen interpolation do not reach the
amount of the breaking-off errors. This can be demonstrated the most
rapidly by calculating forth and back with different step lengths.
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t-t
o

At ’
h = T o=
3 3 (111,51)
and with the aid of the differentiating scheme of the table
2
v g, (7) De () A%g (7) A%e (<)
t g (t.)
° e Ne(t,)
2
t +h g (t_+h) A% (+)
° © e ANg (¢t +n) e Mg (1)
Az (t_+n) ’
t_+2h g (t _+2h) g
° a0 A g, (t_ +2h) a0
to+3h ga(t0+3h)

we replace the function ga(r) by the Newton interpolation polynomial.

The differences APga(to) are defined as

» »-1 =1
Ne (t,) =g (t,+n) = A g () (111,52)
We have then
%
+1
[ @™ oy 3 A
v, oal Sat T (at1)t |®at’o’ " a+2 "%a’ "o’

2
_% a+g- a+3 Aan(to) * (a+2§(;i§;%a+47A5ga(to)} (111,53)

When calculating back, At (and also h) has to be taken negative. The
differences A?ga(to) are calculated from their definition (III,59) also

in this case.

(3.3) Numerical computations

(3.31) Compilation of the special initial values and of the

formulas for the solution of o6ne operation
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(3.311) Initial instant: Timing begins from Oct.29, 1958 - the Julian -

day 2429200.5 - and continues in days.

(3.312) Relative motion of the sun and Jupiter: tabulation of ;s(t):

for the instants
; x)
ty =t _+ vh (v = 0,1,2,3) (111,54)

the corresponding values of E,, are to be determined by inversion of

the Kepler equation
E, - E sin E, = pty + M (111,55)

Numerical values:

¢ = 0.0484011000 (eccentricity)
4 = 0.001450215293 4~ (mean motion)
(111,56)
M = 5.645944315 (mean anomaly)
t,=0 (calendar day)

The solution of (III,55) with respect to E, is most easily achieved

by iteration of Newton's approximate formula for solving equations:

E”I - g s8in EDI - ut, - M
By = Bop - T - gcos Ej (111,57)
where EVI xx) is a value which approximately satisfies Eq.(III,55)

and EDII is an improved approximate value. Formula (III,57) has to be

iterated until E,y = EDN satisfies Eq.(III,55) with a given accuracy.

x) The step At = 3h can be chosen arbitrarely

xx)'I‘he value of ED—1 corresponding to the preceding instant tD 1 is

best taken as the initial value of EUI (starting from EoI = 5.615994607).
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Thén, xs(to) can be calculated from the resulting values of Ej:

0.015676901-4.186636655 sin E,~0.323895551 cos Ey
xs(tu) =£04251333487-0.323515939 sin E;;#+5.192722630 cos Ey( L

0

(111,58)

(3.313) Initial data for the orbit of the moon: Computation is to be

carried out with the mass numbers of page 32

m, = o.282532864o'1o"6L3d"2
(111,59)

ny = 0.2959122080°10"°L°4"2

and with the values for the relative position and the relative velocie

ty of the moon, corresponding to the instant to:

-0.1859213874 0.0002062301590
§£°) =4 0.0071237637 \ 1 ﬁ£°) =) 0.0008942872800, L 4~
0.0775628307 -0.0003356104520
(111,60)
(3.314) Approximate orbit for Jupiter's moon: We first calculate
C = (111,61)

Then, the position of the moon on its approximate orbit at the instants

(I11,54) is found from the formula:

el 2(0 20) 1 .
X a () = X, )cos [é(tu - tO)J + ug ) < sin Lc(tv - to)J (111,62)
The velocity of the moon on its approximate orbit must be taken only

for the end point t3 = to + At of the interval;
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3 (t5) = -x]go)c sin[c(ta-to)] . 2(0) cos[c(tj—to)] (111,63)

»

(3.315) Computation of the perturbation integrals: Now the functions

3
6ma(t) and ?ma(t) must be tabulated for the instants (III,54) from the

x)

formulas .

2 (4,)-% (%) x (%) m
? g' Y/ "Tma‘'V s\ 'V 2 2 2
6 (t) =m - ile® - 5 |X,  (tp)
- ’ |Zs(tb)-}ma(t")|3 |xs(tp)|3 lgma(t")l3 ’
32 (£)5,, ()
(t)--_:-—m?———gm(t)- :‘a”‘“” 2. (t) | -
ma lxma(tv)13 ot lxma(tv)lz ¥
n, R U ERCOE ICHIENES)
) + 3 6ma(t” - Y > 2 y
lxs(t )_xma(t9)| xs(tu)-xm&(toﬂ
EHCOIEE SNCO)Y (111,64)

With the aid of the differences between these tables, obtained from

(I11,52) we are able to calculate the perturbation integrals:

t + ¢

[7 faaman@od, 00 38,600 388,00 9,5,

t + 1
i (to+At-1)gm‘(r)dt=(At)2{% Ba(t)e B0 () 12,5,

o

Bor b (t°+At—r)2

S AROLECOLEE IR ICREE -y MCREE - MY

to+ k (t + t—‘r)3
[ NG LBy 7R ICRIE s MCR s AN R

x) The second constituent of ?ma hardly influences the result. The de-

lay of the computer is, however, very small if this part is included in
the calculation, since all the quantities appearing in it had already

to be prepared for the calculation of 3ma.

X . . A
x) The contribution of this integral manifests itself only with great

steps, but the situation is about the same as in the faregoing footnote.
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(3.316) Formulas of solution: The perturbation integrals (111,65) are
wsed to correct the approximate solutions (III,62) and (III,63):
t +ot
2 (t +at)=2 (% _+at)+ °+?t +at=1)8_ (t)dv+ ° ziﬂieﬁ:llz 2 (1)dr
m'\ ot ¥/ =X tota ote ma T §
0

31 ma
o]

(111,66)
t°+At t +at

(] 2
Km(t°+At)=3ma(t°+At)+lc gma(r)dwbj QO%‘—TLEM(T)M

t
o} 0

Now, we replace t_ by t°+(¢t) in all the formulas of (3.31) and proceed
to another operation, using the values of (III,66) instead of those of

(I11,60). Again, At can be newly chosen.

(3.317) Precautionary measures taken to avoid unnecessary rounding
errors: Since the SIE 2002 computer of the TH Aachen, with which our
numerical computations were made, usually calculates with no more than
10 digits some precautionary measures had to be taken to eliminate

rounding errors:

(3.3171) Prior to our computations we reduced the quantity M (and EO)
by a factor of 2n in order to maintain the anomaly |E|<1 for some
hundred days. Thus, the 10th digit cannot be lost during the inversion

of the Kepler equation;

(3.3172) Instead of to+5h we always calculated t°+Ax since h is equal
to %1 only within rounding errors so that a noticeable error might

appear in the time counting;

(3.3173) When calculating solutions from (I11,66), we first determined
the sum of the perturbation integrals and then added the approximate
solution. In this way, the rounding error of the additions enters the

result only once.
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(3.32) Results N

(3.321) Trial computations made s© far and experience gathered from
them: The following trial calculations were made:

(3.3211) The first informative computations with different steps (one
step forward and one step backward) have shown that formula (III,53)
ig sufficiently accurate and that the step constitent with the consi-

derations in (3.242) is approximately 1d.

(3.3212) 100 steps were calculated forward and backward with at=14 x)

This was the most important part of our calculations since they could

be compared with other results.
J.Kovalevsky pointed out that his 12-digit computations, carried out

by Cowell's method with an IBM 650 computer, took 10 sec. for each

operation and that the deviations in the coordinates and velocities,

obtained when calculating with (At) = 54 100 days forward and backward

(i.e., in 40 operations) were less than 50.107'°L and 100.10" 12, re-

spectively (unit not given).
We obtained the following results by this method:

10-digit computation with an SIE 2002 computer took 2 sec. for each

operation (the printing of four lines of data after each operation,

which was necessary for informative purposes but could be omitted la-
ter, took 1.6 sec). When calculating with the step (at) = 14 100 days
forward and backward (i.e., in 200 operations), the deviations in the

-10 -1, -1

coordinates and velocities were less than 15.10 L and 1.2°10 Ld4d ,

respectively. On the basis of this result and with the aid of the (still

very rough) estimate it could be shown in (2.243) that the errors in

x) The relevant section of the table may be seen from the enclosed
table of data.
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the analytic continuation at At = 1d accounted for no more than 50%
of the values indicated, whereas the remaining deviations were due
to the rounding errors. The same computation with At = 2d yielded

deviations in the coordinates and velocities of less than 28.10-1OL

and 4.10-11Ld-1, respectively. The remaining test time was used for
informative computations with greater steps (3d, 5d, 10d). Here, the
break-off errors were already noticeable. As a result of these com-

putations, we came to the conclusion that the expressions ﬁf(t) and

R(t) might be used for a correction (cf.(2.24)).

(3.3213) Integration was performed from At = 1d (then 0.8d, 0.6d, 0.44d)
beyond the nearest distance between Jupiter and the moon, and the time
left was used for backward calculation. The values obtained again
agreed very well. In order to save time, only two lines of values

were printed.

(543214) The modification mentioned in the footnote p.45 was calcu-
lated. At the same time, the printing commands were distributed more
conveniently in order to stop the computer for a shorter time. Calcu-
lation and printing took about 2 sec. for one operation so that the

printing process was hardly interrupted.

(3.322) Influence of errors: The results can be falsified in four ways:

(3.3221) by calculating with an insufficient number of protective pla-
ces. Rounding errors may cause serious errors unless they are smaller

than the break-off errors from the very outset;

(3.3222) by using too great steps. If a definite number of terms is

used, the required rapid convergence of series can be achieved only if
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the step At is reduced;

(3.3223) by successively performing many, sufficiently accurate ope-
rations (if At is definitely chosen, the excessively strong propaga-
tion of the break-off error can be eliminated only by allowing for
further terms of (III,26). This means, however, that the break-off
error is reduced simultaneously. Reduction of the step alone is not
very advantageous since the required number of operations increases

simultaneously, cf.(III,44).

(3.3224) by inexact tabulation of the functions appearing in the per-
turbation integrals, which can be avoided either by a more exact ta-
bulation or by reducing the step.

The rounding errors show a random character, whereas the other three
error sources reside in the method; however, they can all be controlled:
in(3.3222) by observing the increase of (III,39) and by reducing the
step in time;

in (3.3223) with the aid of the estimate (III,44) which can be improved
since we have always taken the maxima of the absolute values of the
quantities involved;

in (3.3224) by calculating forward and backward (random sampling) and,
if necessary, by reducing the step.

When (hoosing the step aot, it is necessary that conflicting require-
ments be compensated:

Results of given accuracy are to be obtained with the greatest possible
step and the least possible number of operations. The modification
mentioned in (3.24) is very helpful in this regspect, since it makes it

possible to allow for the essential part of the rests of series without
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.determining the required perturbation integrals. Finally, it should

be stressed that we have dealt only with a special example and that

our method can also be used for the numerical solution of general
manybody problems. The elaboration of our method is still under way, and

we hope that we shall soon be able to achieve even better results.

Notes on the table of data:

Since the data were originally printed only for the purpose of ob-
taining information on the efficiency of our method, we expressed

the numbers in the way they were stored in the computer. The comma was
omitted. The last two figures of each number are the so-called charac-
teristics of the values represented as floating-point numbers (charac-
teristic = exponent + 50; the point of the computer is put behind the
sign). The decimal number +0.7, for example, corresponds to the floa-
ting~point number + 700 000 000 050. Another disadvantage of the tables
is that the printed numerical values are not clearly arranged. After
each operation the values were printed in the following four-line

arrangement (dimensions are given in brackets):

time t [d}, step At [d], components of }m(t) [LI, gm(t) [L]
components of gm(t) [L d-1]
components of ﬁs(t) [1a™° ]’ﬁi(t) [L d-21
components of ;s(t) {L ]st(t)l [L]

The numbers in the third line give information only on the order of

magnitude of the expression ﬁ%(t) (we calculated only with ten digits

and several digits were lost in the course of calculation, especially

during the determination of the difference between two approximately
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equal numbers from formula (111,39): The first two figures and the

characteristic are valid at most, while the other digits are insigni-

ficant.

Table of data:

We do not reproduce the full

is interested to have a copy

A short summary reads

table which covers 24 pages. Anyone who

should write to the author.

(3.4) Appendix: The Lie Groebner Method

The solution sought

x(t) = (x1(t), xz(t), cees xn(t))

of a system of n differential equations

58

time [d | step [d-] (J?m)x |2ml

0.00000 + 01.00000 - 185921387450 + 201577536050

1.00000 + 01.00000 - 185711957150 + 201288442250
99.00000 + 01.00000 - 129514535750 + 158151320350
100.00000 + 01.00000 - 128523006850 + 157550010150
99.00000 - 01.00000 - 129514535750 + 158151320350

0400000 - 01.00000 - 185921386050 + 201577534650

(111,67)
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T x(t) = £(x(t), t) (111,68)

with

£(x(t), 1) = (£,(x,(8)s woe X (1), 8)y won £(x (1)) ouv t)

(I11,69)
satisfying the initial conditions
x(to) = a = (a1, 8oy eeo an) (111,70)
is given by the following formula (see Ref.1,32)
t a -
N (t-7) a
x(t) = x(t) + S J = [DQD L dt (I11,71)
a=0 1 -
o)
where
: - X A
x(t) = (%, (8), %,(8), «vo X (%)) (111,72)

are given functions satisfying the system of differential equations

d 2 A

3% *(t) = a(x(t), t) (111,73)
with

g(R(8), ) = (g,(R,(1), «ov R (1), t)seurg (X, (8),..8)) (II1,74)

and fulfilling the initial conditions (III,70), i.e., %(t) = a, where-

as the Lie operator D is defined by

/
D = £ (x(t), t) E%E s 2 (111,74)

where D°F = F, D'F = DF, D°F = D(D* 'F), if F(x(t), t) is differentiable

an appropriate number of times, and

D, = (£,(x(t)s t) - g(x(t), 1)) 33; - D - D, (111,75)
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Furthermore, to calculate the expressions .

[Dzbaxi]A( ) (111,76)

the variables x(t) = (x1(t), ceoy xn(t)), t are to be considered in-
dependent in order to obtain p*x and D2Dax. Then x(t) is to be re-
placed by the given functions (III,72), %(t) and t by t. Consequently,
the sought solutions (III,67) of the system (II1,68) may be calculated
by formula (III,71) from the given functions (III,72).

In numerical calculations (III,71) has, of course, to be broken
off, and only an approximation of the sought solution is obtained. This
approximation may, however, be used to define a new decomposition of
D into D, and D, (eqs.(111,74), (III,75))in order to compute a further
approximation; it can be shown that under rather general conditions
the repetition of this procedure yields a sequence of approximate soluw-
tions having the solution sought as its limit (see Ref.2). Starting

from the initial functions

JX(8) & (X, (%), coes X (%)) (I11,77)
the expression
oX(4) & (X (8), euy x, (4)) (111,78)

is assumed to be the p-th approximation to the solution (m+1 times
differentiable functions), satisfying the initial conditions (I111,70),

i.e., l)Q(to) = a, and let

b8() = S5 x(%) (111,79)

by their derivative;in this case, the decomposition of the operator

D= D, +

PP+ P

° with
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)
D = \)gx(t) a—xK- + 3% (111,80)

yields the v+1-st approximation in the form

vﬂ'}(t) - X(t) +i} 11‘—;:—)1[@21):]”&‘(1)1(11 (111,81)

a=0

resulting from Knapp's general method of iteration (see Ref.2). As
mentioned, the sequence v?(t) converges toward the solution x(t) for
v =00, for a certain fixed m and a suitable interval |t - to‘.
In order to reduce the computational effort m-3 or 4 should not be ex=-
ceeded in practical applicationse.

Since in practice all functions are usually given numeérically
the iteration rule (III,81) should be reformulated in order to avoid
numerical differentiations (III1,69). For this purpose, we start from the

functions
&) = (&, (%)) 8p(t)s oo g (%)) (111,82)
instead of (III,77) and obtains the p-th approximation

oX(t) = (g, () jgp(t) oeee 8 (1)) (111,83)
by iteration; using the initial conditions (I11,70) the approximate
solution

t
A
x(t) = a + J g(t)dr (111,84)
v t Y
o
is found. With the help of the same decomposition of the D-operator we

obtain the iteration formula (see Ref.2)
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o v a=1 *
518(%) = £(,%(8),t) + > J %[\PzDiJﬁ(r),rdt (111,85)

a=1 1
o

Since the expressions UD2Daxi(i=1,2, «ees 1) can be calculated once for
all it is not necessary to differentiate given functions numerically.
If the constant initial values (III,70) are taken as the initial
solution an improved solution can be found by applying the iteration
procedure once (as far as there is no better initial solution determined

by the problem itself), i.e. (see Ref.2)

1]

OQ(t) i M[Dax]a’t (111,86)

a!
=0

or o1
m_ (t-t ) r
g(t) = 2 p%x (111,87)
0 ) a=1)"! a,to 4
where o \W m\\(m. In doing so we obtain the operator
i E_Q)_OM « 9
oo = (Fp(x,t) = 2 Tam1): [D xK]a’to Iy (111,88)

representing a suitable decomposition for numerical calculations.
The functions

x(t) = (LR, (8) s Ro(8) s eueney ,% (1)) (111,89)

found with the help of (III,84) and (III, 88) by applying once more the
iteration formula (III,85) are in the most cases a sufficiently exact
approximation of the sought solution (III,67) & the interval (to, t).
If higher accuracy is required it is more expedient to carry out some
further iterations instead of including greater values of m, i.e., to

calculate more complex terms of the series (III,71); the numerical
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.

Entegrations needed are, however, apt to aggrevate the iteration pro-
cess. Fortunately, the method converges rapidly such that there is
seldom need of more than two iterations (see Ref.2).

Theoretically, the following three possibilities of construc-

ting the solution result from the aforementioned facts:

a) m =00
b)|t AN Y

c) v =

Practically all three possibilities can be combined, which increases
the adaptibility of the method to various problems and to the diffe-
rent domains of their solutions.

The fast convergence of the iteration procedure by Knapp be-
comes obvious from the error estimate (see Ref.2)

. (K, 6=t ] ™YY |
|xi(t) - % (1) (e (37152, +oom) (111,90)

where b and K are constants and m is the number of equations of the
system. Consequently, the differences

A d, x(t) A ~
o5(8) = 2(R(4), ) - o < e R(6),) - 2(R(8),0) -

m } tor a=-1 a ( )
- E D.Dx A dt II1,91
= (a=1) 1 o072 ox(r),r

are integrated to yield the values

A o)
ORm(t) = x(t) - 1x(t) 'zj OS(T)dT v os(t) (111,92)
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which are a good estimate of the remaining terms; in case of small
step length (t - to) they can be used to correct the results (III,89)
of the first approximation, since in this case they approximately
correspond to the improvement due to the second approximation. The
expressions (III,92) may dlso be used to automatically adapt the
integration step lengths to the problem to be solved in its va-

rious domains of solution. As to the treatment of error propagation,

see Ref.2.
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Chapter IV

Application of the Method of lLie Series to a Calculation

of Particle Orbits in Accelerators

by F.Ehlotzky

Abstract: In this chapter it will be shown how Lie Series
can be used for a numerical treatment of differential
equations of the isochronous AVF cyclotron, particularly

in order to study stability problems.

It is of interest to test the usefulness of the Lie series method %y

a problem which is, at present, very pressing in high energy phy-
sics, i.e., the calculation of particle orbits in accelerators (see
Ref.33), viz. an AVF cyclotron (see Ref.34-37).

Generally, the motion of charged particles in a cylindrically symme-
tric magnetic field % (r, ©, z) which is constant in time is described
by the following canonical system of equations (see Ref.34,35). (We
chose my=¢c=¢e=1;m = rest of mass of the particle; ¢ = speed of

light; e = charge of particle.)

p. = a - 1B, + (v/q) p,B,

r' = (r/q)p,

p, = rB_ - (r/a) p.B,, a = (p° - P - Pi)1/2 (1v,1)
z' = (r/q) p,

t' = E(r/q)
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It proved to be expedient to introduce the azimuth 6 as the inde-
pendent variable instead of time t; therefore, r' = dr/dG, etc.
Furthermore, already many important informations are obtained in
calculating an accelerator if, to start with, the field accelerating
the particles is neglected, i.e., in the case of a eyclotron the

h-f electric field in the gaps between the D-s (see Ref.34, 35).
This is always Jjustified if it can be proved that the phase inte-
gral over a closed path of revolution of a particle is adiabati-
cally invariant (see Ref.33). On this assumption, the system of equa-
tions (IV,1) has been derived, and since the Lorentz force is normal
to the momentum 3 of the particle, the energy E = (p+1)1/2 is con-
stant. The acceleration procedure is not taken into account with the
considerations made here.

In a cyclotron with azimuthally varying field (briefly, AVF
cyclotron) to which the further investigations refer the azimuthal
periodic variability of the magnetic field gives rise to the necessa-
ry axial focusing of the particle beam. The latter may also be achieved
by purely radial dependence of the field but the condition to be ful-
filled in this case (6Bz/ar) is not consistent with that of isochrony
(6B2/6r> 0). In the ideal case, the period of azimuthal variation is
2n/N, where N is the number of completely equal magnetic configurations
causing the desired field variability in the @-direction. The azimuthal
variation of the field is also a function of r, such that the field
has "swirl" structure. In axial direction the magnetic field is, of
course, symmetric with respect to the central plane of the accelerator
which may be identified with the plane of the particle equilibrium or-
bits. Since in the present case rot ﬁ(r, @, z) = O the magnetic field

may derive from a scalar potential, i.e., B = grad &, where ; may be

66



~

Y

*expanded in a power series of z:

8

n

$ (r, 6, 2) = :E:: 2;11 ; (APB(r,Q))zzn+1 (1v,2)

n=0

which usually may be broken off already at n=1.

A = (1/r)(e/or)r(d/dr) + (1/r2)(62/6r2) and B(r/e) Bz(r, e, 0).

'An analytic expression in the form of a power series in r and a
Fourier series in & may be given for the funtion B(r, 6); it is,
however, more expedient in practice to give B(r, ©) point by point
on a r, ©-net, and, if necessary, to interpolate between these va-
lues (see Ref.35-37). At any rate, the system (IV,1) cannot be inte-
grated in an elementary manner, but must be treated numerically.

It is, to start with, of particular interest to determine the
equilibrium orbits of a particle and the frequencies L; and ﬁg
(focusing frequencies) of the radial and axial oscillations (see
Ref.35—37) belonging to several given particle energies for the given
magnetic field configurations B(r, ©). (The particles of the beam
carry out these oscillations about the equilibrium orbits if as is
always the case they do not exactly fulfill the initial conditions
of the equilibrium orbits, a fact that is also necessary to achieve
beam intensity). It is usually sufficient to allow for the linear
deviations, as being remarkably great, which excludes a coupling of
the radial and axigl oscillations. The equilibrium orbit is defined
to be that possible particle orbit for which the orbit radius r and
the radial momentum p, are identical (see Ref.35) at the beginning
and at the end of one of the N identical magnetic field sectors of

an AVF cyclotron. (Since the equilibrium orbits lie in the central
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plane of the cyclotron we have always z = P, = 0).
The periodically occurring initial values

r, = r(o) = r(Oo),
o, = 2n/N (1v,3)

Ppo = Pp(0) = 2,(8,),
defined in this way must be found by successive approximation.
For this purpose the system (see Ref.35)

| B -
P q rB(r, ©), » ) 1/2
q = (p" - p.) (1v,1a)
r! a (r/Q)Prv
found from the system (IV,1) by specializing for the central plane
is integrated numerically with approximate initial conditions for
the equilibrium orbit. If no better values are available r, = p/B,
P, = 0 are chosen as such conditions, where B is the value of the
o
magnetic field averaged over @ (see Ref.35). The integration mentioned

yields the values r(Go) and pr(eo) at the end of the sector differing

by

&1 = r(Qo) - Ty Ep o= pr(go) = Pp (1v,4)

(]

from the initial values. We repeat the integration with two modified

initial conditions
(1v,5)

where the choice of 6r and 6pr is suggested by the deviations (IV,4).
In doing so, the new values r1(90), r2(9°), p1(90), p2(90) result at

the end of the sector; by means of the transformation matrix (J) they
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*may be represented as linear functions of the initial values (IV,5)

(see Ref.35)

r1(90) =t + I, 6T, prj(go) =p. + I,,0p, (1v,6)

r
o

r,(6,) = v, + I, b, prz(go) - pro + I,,0p,
The unknown a, and a, to be calculated from the system of equations

(I11 - 1)a16r + 1,800, = ¢,

(Iv,7)
Iz1a16r + (122 - 1)a26pr = £,

permit the calculation of new improved initial values for the equi-

librium orbit, viz.

;b =1, - abr, Br = p. - a,0p, (1v,8)
o )

This procedure is repeated until the conditions of the equilibrium
orbit (IV,3) are fulfilled with sufficient accuracy. If ¢ = 61 + 22
is the deviation of the first approximation, then the deviations of
the following approximations are 82, QA, +«ee3 therefore, the method
converges very rapidly (see Ref.35). At the same time also the matrix
(J) is determined more and more exactly; according to the Flogquet
theorem it may be used to calculate the focusing frequency from the

equation (see Ref.35)

2 cos (urOo) =I,+1I, (1v,9)

The determination of the axial focusing frequency is carried out
in a similar manner, but we shall not treat this problem any longer.

The L.-G.-method will now be used to a stepwise integration
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of system (IV,1a), in particular, in Knapp's formulation as an
iteration method (see Ref.2). The interval of integration (O, Oo)
will now be subdivided 'into n equal steps, and, in order to illu-
strate the scheme of calculation, we pick out the first subinterval
(0, Qo/n). For = 0 the initial conditions are pro, r, correspon-
ding to the conditions (111,70). First, the Lie operator D defined
by formula (I11,74) is needed for the calculation. Comparing the

general system (III,67), (II1,68), (III,69) with the system (IV,1a)

of the present problem (© is to be identified with t) we find
D = (q - rB)(9/0p.) + (r/a) p,. (0/0r) - (3/09) (1v,10)

With its help we can immediately write down an initial solution

according to (III1,86) (m = 2 was chosen)

2.(8) = » + 8(ay - r,B(r,,0)) - (6%/2)p, (1 - r2/a;) -

. ((8B/or) - ro(aB/ao)o)
2(0) = r_ + 6(r /o), - (6°/2)(x /a,) -

. ((a, - v B(xgs O)(1 + B°_ /a2) + b2 [a,  (IV,11)
o o

2
where q_ = (p" - pi )1/2, (aB/ar)0 = (aB/ar)r_r » © = 6} etc.
o o

The derivative of the solution (IV,11) with respect to © will be

designated by ogp( ) ogr( ). On account of definition (III,88) the

operator oD2 is given in the zeroth approximation

oo = ((a-78) = 8) 5=+ ((x/)p, - ,8,) 53 (1v,12)

Thus the following first approximation 18 may be obtained

p’ 1gr
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*with the help of (IV,1a), (IV,10), (IV,11), (1v,12), according to

Knapp's iteration formula (III,85). (Let m = m = 2).

185(0) = (0% - 32(e))'/2 - 2(e)B( %(0), 0 +

(

]
A A

+.f (ODQDpr)opr(g')’ or(e')’ ©'der +

0]

e

+ | (0= e")(,0,0%p)

O

e
18200) = (R()/67 - B2 300 + [ (0,0 8,00,

r o'r
0
)
A\ 2 A A
or(e'), e'de!’ +.j (e - 9')(0D2D r)opr(e'),or(e')e'dO
0

(1v,13)
In doing so, the following rule must be taken into account in cal-

culating the integrands (according to (III,76))

(s2202,),2,(8")s [ F(61), 6' = ((D,(a-rB) B,(6"), 2(e'), 0) -
- (%2202 L 2enyn( (e1), @) - 08(0")
C (B (81)/ (%= 3%(e1)) /2 - (( B(en) /(- B(0))1/2) .

+(,2.(8")-08,(8") . (B(,F(8"), 0') - _F(0')(9B(x,0)/or)

(1Iv,14)

Owing to the general formula (II11,84) the first approximation to the

solution of the system (IV,1a) is given by

8
A
1P.(0) = P, _é 185(0")ae"

e (IV,15)
1r(e) =T + _g 1gr(O')dQ'
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If this solution does not yet correspond to the accuracy requirements

an improved operator 1D2 must be determined with the help of (IV,13)
and the general definitions (III,75), (111,80). With its help an
additional application of the iteration formula (III,84), (111,85)
yields the second improved approximation 2Py oT where, of course,
the first approximation (IV,15) has to be substituted on the right-
hand-side of (III,85). The final values pr(Go/n), r(Oo/n) obtained
in this way are then the initial values for the next step of inte=-
gration etc.

According to the facts indicated at the end of Section 2

the functions

)
oR,(8) = .(8) - ,B.(0) =’g oSp(e') e’
0

o (1v,16)

oRr(G) = r(8) - 1r(e) » .§ °sr(e')de'
0

are a reasonable correction of the first approximation for
sufficiently small step length Go/n; in this formulsa, OSP(G'),
osr(e') are to be obtained from the general definition (III,91)
specializing to the system (IV,1a) and from the approximation
(1v,13), (IV,15) given for it above.

This completes the theoretical discussion of finding the
equilibrium orbits in an AVF cyclotron with the help of the

L.-G.-method.
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Chapter Vv

Optimization Problems Solved by Lie-Series:

Soft Landing on the Moon with Fuel Minimization

by F.Cap, W.Groebner and J.Weil

Abstract: The problem of soft landing on the moon with
the additional requirement that fuel consumption during
the deceleration of the rocket should be minimized is
solved formally with the help of Lie series. A corres-
ponding one-dimengional problem having no solution is

briefly reviewed.

The enduring effort to improve technology - generally speaking as
well as, in our case, the technology of space craft - has given
rise to the concept of optimization; optimum control systems are,
therefore, gaining more and more importance in space fli
mization may be carried out with respect to various parameters, as,
€.8., time of flight or consumption of propellant. In this chapter,
we shall consider the problem of soft landing on the surface of the
moon under the additional condition of minimizing the fuel needed to
operate the decelerating rockets.

Optimization problems were for the first time solved with the
help of Lie series by Groebner (see Ref.39) and Dotzauer (see Ref.40);
the present chapter is closely related to their considerations. -
The equations used by us show an intimate resemblance to those used

by other authors (see Ref.41). - Before stating and formally solving
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our specific problem we shall present the general formalism based

on considerations of Ref.39,40.

(5.1) General Formalism

Let p functions xi(t) (i=1,...,p) specifying, e.g., the positions
and momenta of a spacecraft and g functions yj(t) (3=1y.00,q)
representing control forces be given. The equations to be solved
are of the form

X, = Gi(X, y) (L =1y eoey p) (V’1)

They serve as the constraint conditions supplementing the equations

stemning from a minimization of the integral T

T
1) = [ {plowd) « ay0,00m) e (v,2)
(o]

To secure uniqueness, p initial or final conditions of the form

xi(O) = ay (Vy3a)

x; (1) = e, (V,3b)

respectively, must be given. As will be shown below, Lie series for-
malism provides a convenient method of transforming final conditions
to initial ones.

Briefly, we shall have to find the 2p + q functions xi(t),
yj(t) and AK(t) - the Lagrange multipliers - from (V,1) and the p

equations:

N i 0
Ag = _Z)‘i ox, T oxg (V,4)
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and the q equations:

G,
d OF i 3F
—— e = =) A, —— 4 — (v,5)
dt dy. E ioy. T 9y,
Y Y5 %5

together with boundary conditions.

We shall now pass to the calculation of the corresponding
new initial conditions from the final conditions, making use of
Lie series formalism. Redefining our variables in a straightforward
way appropriate to obtaining Lie solutions our system reads (see

Ref.1):
Zi =$’i(z) (i =1, ..., 2p+q) (V,6)

Let, e.g.y 2p + @ - 1 initial conditions

(Zi)t=o = a, (i =1, veey 2p+q-1) (V,7)

and one final condition
F(Z1, * o ey Zn)t=T = 0 (V,B)

be given. The solution of this system is given by:
00 Y

2; = EE: ET ﬁﬁi = etDai (V,9)

D=0 :

where the D-operator is composed of the right-hand sides of (V,6)
in the well-known manner (see, e.g., Ref.1). Using the well-known

commutation theorem (see Ref.1) we have:

F(Zyy «eerZy ) = ¢ P.F(a,) 53 (tsa;) (V,10)

2p+q

The function § defined in this way may be used to reexpress the

final condition:
§v (T; 31, -00.,an-1,§) = O (V’11)
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where E is considered variable such that
S = b = zn(o) (v,12)
The initial condition representing the final condition reads:
E(o;v Byy sees an_1,§) = F(a1, ceo an_1;§) = 0 (Vy13)

where the value of §t=T is connected with b = §t=o by

TD
§t=.fr = (e 1b)T=° (v,14)
with
5 o i1(1;a1, ceerd 1’§) 5
17 ot Y2 (V915)
§S(1;a1, ceeral 1,3)
b 0P
G- X " 5¢ )
This statement (V,13) is easily proved as follows:
With
Dyt =1, D} v=0 (V,16)
and
D’:E (15 a5, ...,a'n_1,§) =0 (V,17)
as well as
TD1
T = (e T)§=b,1=0 (V,18)
we obtain, using again the commutation theorem (see Ref.1):
™, .
E(T’g‘ ays ceeamy y) = (e §(T’§;a1"“’an-1)§=b =
f=0
=§ (a, 8.1, es oy an_1,b) = 0 (v’19)

qe€.de.
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(5.2) The Problem of Soft Landing on the Surface of the Moon

with Fuel Optimization

Our specific problem to be solved by Lie series formalism is a two-
body problem, i.e., the decelerated motion of a spacecraft in the
neighborhood of the moon subject to the conditions of soft landing
(vt-T = 2-3m/sec) as well as of minimum propellant consumption du-
ring the action of the decelerating rockets. The equations of mo-

tion to be employed read:

;v = -V’v (V,20a.)
> 7mmmv2v >
m, ($)V,(4) = —S— + J(¢) (v,20D)
r
v

where mv(t) is the mase of the vehicle, ;v(t) the position of the
vehicle in the moon's coordinate system, 3v its velocity, r, its
distance from the center of the moon and y the gravitational con-

stant. ¥(t) is defined by:

dm =
v
DR

at y (vy21)

with the optimization integral

T dm T

v 1 32
S T 4t = - ;-S Vy dt = extr. (v,22)
o °

where ¢ is the constant exhaust velocity of the vehicle. Additionally,

the following boundary conditions are to be satisfied:

X,(0) = %,(0), % (1) - 3,(1) = 2-3m sec”"

(v,23)

9 >
x,(0) = X2, ;V(T) = X

v vT

(i



if we assume the initial and final points of the vehicle's path to
be given.

Rewriting our equations to be solved we obtain:

) N - - ..
i=1, (X)), =% =Gy = X5
. > - - .
i = 2, (xv)y =x, =G, = Xg 3
. ot - 2
i=3,(x) =x;, =G, =x
v'a 5 5 6’ (v,20¢)
i=4, (ev)x = x4y
1 = 5’ (;I'V)y ; X5,
i=6, (V), =x
and
L™ 1
= —_— —_ 2
G5 r3 X, + v, ¥ (v,24)
v
3 *3 V3
with
;V = (x»]’ x2! 13) (V,25&)
and
Y
Yy o= (yy9 951 ¥3) (V,25b)
ag well as
m,(t) =y, (V,25¢)
such that we have to solve six equations of the type:
Xy = Gi(x1,x2,x3,x4,x5,x6,y1 ,y2’y5’y4) (v,20d)

which are supplemented by the Eulerian equations stemming from the

78



5ptimization integral:

a6,
. oF
RN (v,4)
i K e
, 3G,
d oOF E i oF
at oy, - "~ 4 M o5y, t ey, (vV,5)
3 i j j

where in our case:

2 2 2!
F = - % Vy1 * ¥, + Yy (v,26)
such that (V,4) becomes
oG oG LT
N o= ep =& 5 _, _6 -
Ae = = A 5% AS y A 3% (K = 1,2,3) (v,4a)
K K K
and
Ag o= =Ays Ay = =hyy Ag = Mg (v,4D)

. . _ : -
since the Gi(l =1,2,3) are of the form G1 E’x4, G, Z xg) 65 =x,

and the F are independent of x;. The equations (V,5) yield:

¥l an Yl
d 9 _ 4 "Y6 . dF
it 3;; =0 = A4 ayj + AS ayj + Ag 3;; + oy (v,5a)

(J = 1)2,394)

such that we have 16 equations for 16 functions from which 12 equa-
tions for 12 functions (i.e., corresponding to the number of boundary
conditions) can be deduced by elimination. The final conditions

iv(T) = ¥(T) and }V(T) = %, are transformed to initial ones by the

vT
process given above.
It was not possible to carry out detailed or numerical calcu-

lations since NASA stopped its financial contribution.

9



The one-dimensional problem of soft landing is treated in

many papers (see Ref.42-47).
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Chapter VI

On the Equations of Motion of Satellites

by

F. Cap, D. Floriani, A. Schett and J. Weil

Abstract: After discussing the forces and torques acting on a
a satellite we turn to the expansion of g(T) in a Taylor series
(§ = Z(F)m). Explicit expressions of the first four terms of this
series and the complete equations of motion of a satellite. In
section (6.2) we present the solution of the equations describing
the heavy asymmetric gyroscope in the forms:
a) Solution = Solution (heavy, symmetric) + contributions
from asymmetry.
b) Solution = Solution (symmetric, forcefree) + contributions
from asymmetry and forces.
¢) Solution = Solution (asymmetric forcefree) +
contributions from forces.
Insection (6.3) the above mentioned equations of motion are solved
using Lie series. In section (6.4) some aspects of our numerical
calculations concerning the motion of a satellite about its mass

center are discussed.

(6.1) The Dynamical Equations Describing the Motion of a Satellite about

its Mass Center by A. Schett, J. Weil and D. Floriani

(6.11) Introduction

Many problems posed in satellite research work require the

fixation bf the satellite's position with respect to the surface of the

earth. For this purpose, a number of active methods has been developed

since the beginning of space flight whose success depends on the precision
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with which each element of the regulating mechanism is operating; further
a continuous input of energy is necessary. Recently, great attention was
paid to the idea of utilizing the earth's gravitiational and magnetic
fields for the purpose of stabilization. This aim would be achieved if
for certain initial positions torques became effective in the further
movement of the satellite along its path such that it is, so to speak,
rotated back into its original position relative to the earth's surface.
Consequently, the influence of very small effects, as, e.g., radiation
pressure and air friction (treated in (6.12)) must te regarded in the
theoretical treatment of the problem. For this purpose also higher terms
of the Taylor series expansion of 3(?) were considered here in the
equations of motion since the first two terms are certainly insufficient

(see Sect. (6.13)).

(6.12) A Survey of Forces and Torques Acting on Satellites and a Survey

of Papers Dealing with the Attitude of a Satellite and with Gravity

Gradient Stabilization

If we consider a satellite orbiting around the earth, six second-order
differential equations are required to describe its motion (see Ref. 52).
Three of these equations serve to describe the motion of the center of
mass whereas the three remaining ones specify the orientation of the
satellite. Several perturbational torques and forces act on the satellite.
It seems to be desirable to obtain a solution in which the perturbational
torques and forces are represented in separate form.

In Sect.(é.z), we shall show that Lie series representation of the

solution to differential equations make it possible to split the solution
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into several»terms each of which is responsible for a definite physical
effect. This splitting off procedure can bte used to represent the solution
describing the motion of the satellite.

In order to find a favorable representation in numerical evaluations,
it is, however, necessary to know the order of magnitude of the individual
forces and torques., Our interest will, therefore, be focused on the
perturhational forces Ep and the torques ﬁp' Besides some analytic
expressions for these forces and torques we shall present some numerical

> »
data for Fp and Mp in order to compare the respective orders of magnitude.

(6.121) Survey of Forces and Torques Acting on a Satellite:
>
(6.1211) The Forces Fp (Ref. 53):
>
(6.12111) Analytical expressions for Fp:

With respect to a frame of reference whose origin lies at the center

of mass of the earth, we have the following principal forces acting on
a satellite:
50: the gravitational forces which are caused by a spherically
symmetric potential field.
51: perturbational forces corresponding to an asymmetry of the gravita-
tional field caused by oblateness and inhomogeneity of the earth.
ﬁé: drag force, i.e., forces due to the fact that the vehicle moves in
a rerified gas rather than in vacuum.
ﬁg: force due to radiation pressure.
54: gravitational forces due to the action of the sun and the moon.
5: is the magnetic force and

F6= is the force due to casual effects,

we shall now enter a more detailed discussion of the individual forces:
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>
a) FO: The gravitational force is given by

> _ af
F = - (VI’1)
° 3
r
with 2
p = h Mem

h2 is here the gravitational constant, M the mass of the earth, m that
of the satellite, and ¥ is the vector pointing in the direction of the

satellite.

>
b) F1: The potential taking account of the asymmetry of the gravita-

tional field is given by (Ref. 55, 56)

Utotal = Usymm * Uasymm

where 0
U —P'K2 Z{J (E)np (sin ) = (E)npm(sin g)(C_ _cos me +
asymm r neo nr n r n n,m (VI,2)
+ Sn,ms1n me)

R is the equatorial radius of the earth, the Pn are the n-th order

Legendre polynomials, the Jn are coefficients and g8 is the angle
between the equatorial plane and the plane of the orbital motion.
The coefficients Jn can be determined by measurement; their values

up to the neinth order are (Ref. 57, p. 71).

J, = (1082.48 % 0.04)+107°

Iy = (-2.566 ¥ 0.012)-10'6

3y = (-1.84 * 0.09).107°

Jg = (-0.063 ¥ 0.019)-107°

5 - (0.3 .6 (VI,3)
g = (0.39 - 0.09)°10

J7 = (-0.469 I 0.021)-10'6
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oy
"
1+

(-0.02 = 0.07).10"

6 (v1,3)

I+

y
]

(0.114 = 0.025).10"

Using (VI,2), we obtain for the force due to gravitational asymmetry:

F, =JU (VI,4)
with 3 2 2
V = (5;’ Ev a—z)

X, ¥y 2z is a frame of reference fixed with respect to the earth and

having its origin at the center of the earth. (Remark: The coefficients

C and S
n

are much more difficult to determine than the J
n,m m n

L]

(Ref. 57, p. 72)).

> >
c) F,: The drag force F, acting on a satellite is given by (Ref. 57, p. 242)

»

B, = o .pes 73 (V1,5)
where CD is the drag coefficient usually taken to be 2.0; p is the
atmospheric density; it is plotted in a diagram in (Ref. 59, p. 88).

S is the area occupied by the satellite and projected normally to

the velocity vector ¥. The following table (VI,I) shows the atmospheric

density p as a function of the altitude h (Ref. 59, pe 88):

height
above the surface p(densitya/iﬁ3
of the earth cm
400 km 10714
600 km 10712
800 km 10716
1000 km 1017

Table (VI,I): Atmospheric density as a function of the altitude above

the surface of the earth.
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In a first approximation the density can be described by the following

relation (Ref. 59 , p. 124):

log o(n) = log ,, o(h) - {1(220,m)Z22E + a(n)-g(a) +
A (V1i,6)
+ 6(h)+f(0) + XK(150,h) =L 120

The functions i(220,h), a(nh), g(a), e(h), £(8), K(150,h) and Ap are
plotted in diagrams in the paper by Paetzold (Ref. 58). With the help
of this diagram p(h) can easily be computed. In Ref. 59, p. 86, a more

>
complex formula for F2 is given:

F2 Qggiexp [ (s") ] “§f7ﬁi}
[1+erf(s')] {(2 o' )—+(s ) +v_—1t_—'l‘_.h} (vi,7)

where S is the projection of the satellite's cross section normal

+

to the velocity vector, p is the density, U is the relative velocity

of the free stream, s is the speed ratio, s' = s-sin.q, qis the local
incidence measured from the surface. o' is the surface reflection for
normal momentum, Tw is the surface temperature, T the absolute

temperature and

erf(x) = Vﬁ exp(-x' )dx! with Ogerf(x)<<1.
a) 33: The force 53 is caused by the radiation pressure (Ref. 60, p. 119):
Fs = Srad.-‘]ﬂ"ﬁélgE (V1,8)
where ¢ is the velocity of light, and Srad is the area projected

normal to the vector pointing from the space vehicle to the sun.
The equation holds for an intercepting surface; if the rays are totally

reflected, (VI,8) must be multiplied by a factor 2. A more sophisticated
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formula for 55 is given in Ref. 59, p. 89. The solar radiation

reflected from the earth is negligible.

e) fﬁ: The analytic expression for the perturbational forces caused

by the sun and the moon reads:

m.m
> E 2 i1 , .
F4 = -V‘ . f .T;?T 1=O,1, J=112

where mo is the mass of the satellite, m, the mass of the sun,

1

m, the mass of the moon, f2 the gravitational constant and

> . P
T, are the respective position vectors.

(6.12112) Order of Magnitude of the Individual ﬁp:

->

(V1,9)

The analytic expressions for the perturbational forces Fp are rather

complex and depend on several parameters. The following table (VI,II)

presents numerical data from Explorer XI for the purpose of comparing

the magnitudes of the different forces.

Table (VI,II): Data of Explorer XI

o i i "4 F
<.10-1ms n,3,10'5.s n/6°10'5-S m *%) - 102m
(see Ref. 59, (see Ref. 59, (see Ref. 60,
p. 199) p. 203) p. 126)
(F. ~1072)
(The value of F is moon
given in dyn) ° (F__om_)
sun™ s

*)

Satellite Explorer XI: r = 7512 km (the half major axis on the average),

its velocity is about 8 km/sec
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*) m is the mass of the satellite (given in gr)

**) this seems to be in contradiction to the effect;

The contradiction mentioned is resolved by realizing that the gravity
the earth experiences under the influence of the sun is, on its time
average, equal to that felt by the satellite, i.e., that the satellite's
path about the earth is only perturbed by the sun's gravity insofar as
its distance from the sun is sometimes smaller and sometimes greater
then that of the earth. These differences are, however, comparatively
small (Compare 7000 km with 150 millions of km!).

The acceleration due to the radiation pressure of the sun is,
however, vanishingly small because of the great mass of the earth
(mE - 6.10°7 gr), it is only 3-10-15 cm/secz, i, e., in this case the
effects do not cancel.

The following table (VI,III) shows the relative values of the drag

forces as a function of the altitude:

F Altitude of

2 Explorer XI
100 dyn 400 km
10 dyn 500 km
5 dyn 600 km
1 dyn 800 km
0,1 dyn 1000 km
0,01 dyn 1200 km

Table (VI,III): Relative values of the drag forces as a

function of the altitude

The forces Fo, F1, F3, F4 vary only slightly with the altitude.
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The following table (VI,IV) shows the corresponding values for

Echo I.
F F, F, F3 F4 Altitude
-2

~0,2:107°S 400 km
~0,2°10"73 600 km
~0,2:10™4s 800 km

~102 m <10”" m ~o,2.1o'5s 5910‘53rad M 1000 km (v=7,3 km/sec)
~o,2~1o‘63 1200 km

The Fp are given in dyn; m and Srad means the numerical value of this
quantities.

Table (VI,IV): Data of Echo I

&>
(6.1212) The Torques Mp Acting on a Satellite:

(6.12121)

Analytic Expressions for the Torques:

The relevant torques will be designated in the following manner:

=+

is the

gravitational torgue, caused by a spherically symmetric

potential field

is the

is the

is the

is the

is the

d?¢\£§04j§v\jtt‘3§t_j<*

is the

torque due to gravitational asymmetry

drag torque

torque caused by radiation

torque due to the gravitation of sun and moon
magnetic torque

torque due to casual effects, as collisions with

meteorites, etc.
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Let us now discuss these torques in some detail:

> »
a) Moz Mo is given by

> > >
M =‘/}xr dm (v1i,10)

where the integral is taken over all elements of the extended
body, and T is the force density (i. e., per unit of mass). I;I
is the distance from the center of rotation (i. e., the center

of the earth) to the mass point.

>
b) ﬁ2: M2 is given by the following expression (Ref. 57, . 242):

M. = axk, (VI,11)
M2 = axF, s 1

where |5| is the distance of the center of pressure from the

>
center of mass. F, is defined by Egs. (vi,s) and (VI,7), resp.

> >
c) M3= M3 is specified by an equation that is completely analogous to

(VI,11):

ooy (vi,12)

3 3

>
where |b| is the distance of the center of pressure from the

>
center of mass., F3 is defined by Eq. (VI,8).

>
a) M4: In analogy to (VI,10), the torques due to sun and moon gravity
are given by:
> > >
M, = J;xr dm
- 4
where f again is a force density and T a position vector.

e) M5: The magnetic torques may be due to different reasons:

»
a) The induced magnetic torque iM5 (Ref. 57, p. 241 and Ref. 59,

p. 203):
o> >
iM5 MxB
where
(p_-1)
M = i v (B. D)X (V1,13)
(o]

90




B)

Y)

6)

with L for the relative permeability, By for the per-
meability of free space, V for the volume of the material in

the walls and I for the unit vector along the longitudinal axis.
If the satellite has a permanent magnetic moment, as, e. g.,
caused by magnetic coils or rods, additional torques pﬁéwill
occur. Equations for these torques can be found in the papers
by F. Mesch, et al. (Ref. 54, p. 3, Ref. 57, p. 245-246).
Torques Due to Charge Separation (Ref. 59,.p. 203):

If the satellite is constructed by conducting materials it can
be considered as a conducting cylinder moving through a magnetic
field, and an electric field of approximately 0.4 volts per
meter can be induced across the longitudinal axis of the
cylinder. This produces a charge separation that may influence
the impact parameters of the incident ions. Thus the negative
end will appear to have a larger drag cross section than the
positive end to the positively charged atmospheric ions. The
interesting feature of this mechanism is that each end alternates
his sign during a tumble cycle so that the effect does not cancel
owing to rotational symmetry. In the case of Explorer XI a net
torque of 0,06 dyn°*cm due to charge separation is obtained.
Torque Due to Eddy Currents (Ref. 59, p. 201):

A conducting surface rotating in a magnetic field experiences
induced eddy currents producing torques tending to oppose the
rotation and to decrease the angular momentum of the body. This

torque is smaller than 1,8 dyn-cm.
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The following table (VI,V) compares the most significant moments

in the case of Explorer XI.

¥ M " I Yy

max.: 113 dynecm | max,: 168 dynecm | max.: 3 dynecm | max.: 11 dyn-cm

av.: 57 dynecm ave: 0 *) av.: 6 dynecm

Remark: (J -J ) = 1,587« .10° grocmz; R = 7512 km; v = 8 km/sec;
m-h2 3,986 .10° km3/sec

max,.: maximum

av.: average (over a tumble cycle)

Table (VI,V): Data of moments of Explorer XI

(6.122) Survey of Papers Dealing with the Attitude of a Satellite
and with Gravity Gradient Stabilization:

In the following a short summary of the most important results
concerning attitude and stabilization problems is given. The survey
will be arranged with respect to three items:

Derivation of the dynamical equations,

Expressions for gravitational torques acting on a satellite,

Stabilization of satellites.

(6.1221) The Dynamical Equations for a Satellite's Attitude in the
Individual Papers:

Using the same frame of reference as in our paper F. W. Raymond

*) The tumbling motion results in an equal and opposite torque a half
tumble cycle; hence, the first-order torques average to zero owing to

the rotational symmetry. Second-order effects are negligible.
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(Ref. 62) obtains the following components #f, N7, Kfz
. ®
»|2 v > .
(|“| *"I%)mi’liﬁ * |“|mi’?ifi - Ku,
- > - R
- “il%miéifi + [&]mn,8; - k2,

-En €, + [8]nn, ¢, - Kig

NS
#

=]
3
I

o
L]

where again summation over i is implied (magnetic forces, perturbations
of gravity due to sun and moon, radiation pressure and drag are neglec-
ted). The terms Kdi are damping terms due to the satellite's tumbling.
The equations are identical with ours for the spherically symmetric
case; Raymond does not solve them.

David L. Mott derives in Ref. 63 the same equations agreeing with ours
and those of Raymond.

Linearized dynamical equations of coupled orbital and attitude motion
are discussed in a paper by B. Lange (Ref. 64), who u-es a reference
frame fixed with respect to the satellite.

In his paper Irving Michelson (Ref 67) uses linearized vibrational
equations for small angular displacements a, B, Y from a gravity-gradient
stabilized equilibrium (the principal inertia axes lying at equilibrium
in the directions of orbital angular velocity, the instantaneous earth
vertical and the opposite direction of the instantaneous linear orbital
velocity, respectively). The equations read:

Aq + 33

2(B-C)a =0
BR + 452(A-c)3 + |ﬁ|(A-B-c)§ =0

cY + 22(4-B)y - IEI(A-’B-c)é =0

where A, B, C are the principal moments of inertia, 2 is the orbital
angular velocity for a circular orbit. The equations are characterized

by the fact that the components of the gravitational torque are included
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and that they describe a motion about a point not fixed in space. They
are solved in a manner indicating that there is an infinity of equi-
librium satellite orientations in which, therefore, no attitude control
is needed.

In his paper (Ref. 68), Robert R. Newton considers the problem of
damping the librations of a prolate axially symmetric and gravitationally
stabilized satellite by coupling it to the longitudinal oscillations of
a mass-spring system connected to the satellite. Three equations of
motions (for the mass of the satellite, the mass connected to the other
end of the spring and for the libration component in the plane of orbit)
are given. The coupling for librations in the plane of orbit is linear
to the libration amplitude, and hence is effective for all amplitudes.
Coupling for librations normal to the orbital plane is quadratic in
amplitude and has low effectiveness for small amplitudes.

In his paper, B. Etkin (Ref. 69) presents a theoretical framework
for analyzing the motion of a multibody satellite in a gravity-stabilized
orbiting reference frame. It consists essentially of expressions for the
forces and moments of the forcefield on arbitrary bodies and of their
utilization in Lagrange's equations to find the equations of motion. It
is applied to the analysis of a specific system designed for attitude
stabilization. The equations are linearized and separated into two groups
(longitudinal, i. e., parallel to the orbit plane, and lateral, i.e.,
transverse to the orbit plane).

In his paper, E., E. Zajac (Ref. 70) considers the damping of a two-

body, viscously coupled, gravitationally oriented satellite that is in
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L]

a circular orbit. A graphical method for determining the damping rate
as a function of the damping coefficient is presented. The following
system of equations is quoted for a two-body satellite in a circular

orbit linked at the two-bodie's centers of mass by means of a linear

spring:
d2a »2 do d
SR (B,-C)a + K(a-p) + §(5F - 58) = 0
2258 4 5820 ) - K( ) - §32 - 48y - o
2342 Su-(By-C,)p - Kla-p) - § at " at’ =

where o, p are small deviations from the local vertical, Ai’ Bi’ Ci
are the principal moments of inertia of the two bodies,lﬁl is the orbital
frequency, K is the spring constant of the coupling spring, and f is the
damping coefficient.

In his paper, Paul F, Hultquist (Ref. 71) computes the angular momen-
tum in pitch and roll imparted to a totally stabilized, solar oriented
satellite by gravitational torque over a year's time for a jet controlled
satellite with one axi; normal to the ecliptic and a transverse axis
along the solar vector. Both circular and elliptic orbits are considered.

In his paper, Robert E. Roberson (Ref. 72) examines the foundations
of methods for determining the vertical by differential gravity measure-
ments.

In their paper R. D. Cole, M. E. Ekstrand and M. R. O'Neill (Ref. 73)

consider the problem of what torques are necessary to orient a body in

a given manner (in the paper, the satellite is assumed to be a symmetric
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rotating rigid body). The differential equations of motion of the
symmetric body are given in a body-rotating coordinate system X1,

X2, X3 by Eulerian equations of the form:

A + (C-A)uu_ =1
x Yy 2z X
M+ (C-A)uu_ =1
y Xz y
cu, =L

Z 2

, L

where Uy uy, u, are the components of the angular velocity; Lx’ Ly 2

are the components of the torque, A and C the principal moments of
inertia.

In his paper, T. R. Kane (Ref. 74) is concerned with the investiga-
tion of the stability of a certain type of motion of an unsymmetric
rigid body in the gravitational field of a fixed particle: the mass
center of the body describes a circular path centered at the par-
ticle, while one of the body's principal axes of inertia remains
normal to the orbit and the second one oscillates about the line
joining the particle to the mass center of the rigid body. The pa-
per shows that not only the inertia properties of the body, but also
the amplitude of the motions must bte taken into account, and that
the problem is essentially three-dimensional, 1i. e.,.incorrect results
are obtained when only planar motions are considered.

The equations derived by Kane are essentially the same as ours.

In the ESROTM-27 report (Ref. 93%3) rigid body kinematics and dynamics
are discussed in relation to satellite attitude control problems. Atten-
tion has been given to ways of expressing axis transformations in forms
suitable for computation. Equations of motion are developed for systems

of pivoted rigid bodies, with discussion of the simplifications which can
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often be used., The free motion of a rigid body is treated and equations
are presented for small displacements of a rigid body relative to an

earth-pointing axis system.

(6.1222) Expressions of Gravitational Torques Acting on a Satellite:

In their paper, R. E. Roberson (Ref. 84), D. Tatistcheff and Doolin
(Ref. 85) derive the gravitational torque on a satellite by expanding
the potential energy about the center of mass in a Taylor series and
differentiate with respect to the generalized angles expressing the orienta-
tion of the body-fixed axes.

In his paper, R. A. Nidey (Ref. 75) shows that the gravitational
torque on a rigid unsymmetrical body is normal to the local vertical. The
component of the torque in a given horizontal direction is shown to be
essentially proportional to the product of inertia relative to the vertical
and horizontal planes intersecting in the direction of interest. Since the

average gravitational torque on the system is given by

3.2
Mavg = 4 u AIOQB

where U is the angular velocity of the satellite, AT the longitudinal
principal moment of inertia decreased by the transverse and B the
inclination of the longitudinal axis of the satellite to the orbital plane -
continual acquisition of angular momentum can only be prevented if the
satellite has equal principal moments of inertia or internal weights

must be appropriately manipulated such that the gravitational torque
vanishes,

In his paper, P. S. Carroll (Ref. 76) gives expressions for the gra-
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vitational and the centrifugal torques, respectively: .

_’2 a1 1
Tg = %uo(IS—It) sin 28
and
_ 12 vai "
T, = 5u (I4-I,)sin 2p
where

Tg, Tc are the magnitudes of the instantaneous gravity-gradient
(centrifugal) torque vectors, Eo is the orbital angular velocity,
Is, It are the moment of inertia and the transverse moment of iner-
tia, respectively (the satellite is assumed to be symmetric about one
axis). p'y, BR" are the angles between the symmetry axis and the local
vertical (for I§<It) or the horizontal plane (for I§>It)'

Moreover, an expression for the total torque on a spinning satellite
due to gravity-gradient and centrifugal force is given in term of

Eulerian angles:
»2 .
T = guo(ls-lt) {}T-cos Yy + (0+p)+sin f}

where the anges @ and ¥ are the Bulerian angles representing the
deviation of the spin axis from its initial orientation, and vy and p
represent the orbit-plane orientation.

In his paper, P. F. Hultquist (Ref. 71) also gives an expression

for the gravitational torque acting on the satellite:

i = -Rz‘% [;'x’] av

where T is the vector from the satellite's center of mass to dav, g is
the acceleration of gravity at Earth's surface, Re is the earth's
radius, R is the vector from earth's center to dV, and the integration

is performed over the volume occupied by the satellite. Using this
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relation both in elliptic and circular orbit cases, the angular momentum
imparted to the totally stabilized satellite over a year's time is
computed,

In his paper, C. D. Pengelley (Ref. 78) derives expressions for the
torque on a small rigid body due to an arbitrary gravitational field.

It is shown that the body can always be placed in an attitude for which
the resultant torque will be zero. The torgque is expressed explicitly in
terms of direction cosines relative to the zero torque attitude and of
second partial derivatives of the gravity potential with respect to
suitable specified axes. As an example, the seneral expression is reduced
for the case of a radially symmetric field.

In his paper, J. W. Diesel (Ref. 79) derives expressions for the
gravity-gradient torque which are extremely simple and involve only the
eigénvalues of the gravitational gradient tensor and the eigenvalues of
the body inertia tensor 3 with respect to a reference point O. This
general theory is presented in order to bypass some difficulties (as,
€. £.4 of extraneous vehicle motion) which were initially connected with
the use of gravity-gradient phenomenon.

In his paper (Ref. 87) W. G, Hughes discusses the following torques
acting on a satellite: Drag torque, gravitational torque, magnetic torque,
torque caused by solar radiation pressure and meteoroid impact. From
the discussion one can see that for the majority of satellites, only the
gravitational torque is amenable to accurate calculation and expression
in a reasonable simple analytical form, suitable for use in overall

control system studies.
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(6.1223) Stabilization of Satellites:

In his paper (Ref. 80) W. T. Thomson examines the stability of
single-axis gyroscopes mounted on a vehicle in circular motion about
a central force field for several orientations of the spin vector
and output axis. Stability is investigated when the orientation of
the output axis is in the radial or tangential direction of the or-
bit end if it is fixed in inertial space. In the first case, stabi-
lity depends on the ratio of the spin angular velocity to the ve-
hicle angular velocity around the orbit and the ratio of the mo-
ments of inertia of the gyro wheel. In the second case, stability
depends on the moment-of-inertia ratio of the wheel, the angular
velocity of the vehicle around the orbit, and the desired orien-
tation of the spin velocity vector.

The paper by T. R. Kane and D. Sobala (Ref. 81) deals with motion,
in & circular orbit, of a satellite consisting of a rigid body, which
possesses an axis of rotational symmetry and carries, on this axis,
two particles that performs prescribed oscillations while the axis re-
mains nearly normal to the plane of the orbit. Stability conditions
are obtained by using a generalized kind of Floquet theory to study
the boundedness of the solutions of the differential equations governing
attitude angles.

In their paper, ¥. T. Thomson and Y. C. Fung (Ref. 82) consider the
stability of a spinning space station due to periodic motions of the
crew. Several modes of crew motion giving rise to instabilities are
studied.

In the paper by T. R. Kane and C. F. Wang (Ref. 83) a detailed
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exploration of a single-degree-of-freedon gyroscope fixed in rotating
satellite (with gimbal ring connected to the satellite by means of

a spring and damper) is carried out. The relationship of the motion
of the satellite, the physical characteristics of the gyroscope and
the spin rate of the rotor is discussed in detail.

In his paper E. E. Zajac (Ref. 86) uses the fact that for a satellite
in a circular orbit there exists an energy integral for motion relative
to an Earth pointing rotating reference frame. This integral is used
to obtain a set of orientation conditions.

In ris paper (Ref. 88), V. G. Hughes discusses the use and advan-
tages of momentum exchange control actuators. Furthermore equations of
motion for wheel and gyro actuators have been derived. Finally he
discusses the mean feature of reaction wheel characteristics and
constructions,

In another paper (Ref. 89), W. G. Hugher discusses the stability
of a spinning body, nutation damping, and the choice of suitable moment
of inertia ratios. Further he discusses the spin rate reduction and
spin axis precession, due to external torques, and the possibilities
of active control of spin-axis attitude.

Various ways of providing passive damping are discussed in the
paper by N. E. Ives (Ref. 90). Furthermore an alternative method of
providing the damping, the semi-passive gyroc damper, is discussed.

In his paper (Ref. 91), I. K. Abbott proposes first to treat atti-
tude control of communication satellites in general terms and then
to refer in more detail to particular systems either of existing satellites

or of proposed satellites.
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The ESRO reports TR-1 and TR-2 (Ref. 92) are dealt with analytical
expressions, which describe the attitude drift of a spin-stabilized
satellite controlled magnetically through a coil whose moment is

parallel to the spin axis.

(6.13) Expansion of £(¥)

(6.131) Derivation and Rewriting of the Individual Terms:

To facilitate the integrations~/é(;)dm and JQ;—;S)xg(f)dm occuring
in sections (6.14) and (6.15) an expansion of g(T) in a Taylor series
is recommendable. For this purpose instead of the complete formula for

the gravitational potential (Eq. (VI,2)) the simplified fozm

2
U(R) = % 4 D202 5= (V1,14)
r
with
Qe oJ
E "2
o = - .mE B: = +~——§——— Y: = +38

was used as the starting point. ¢ is the complementary angle of the

geographical latitude, viz.

(o]

¢: = 90

geogr. latitude (VI,15)

C: Center of mass
O: Center of the Earth
N, S: Poles

A

Fig. 1
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A2

" From (VI,14) it follows immediately for 2(T)

2
B(F) = U = +l§(a+3‘E:I;§2§—2)gr - g%(sin @-cos ¢)8? (V1,16)
r r r

(The symbols used and the coordinate system are discussed in (6.132)).

As is well-known, é(?) may now be expanded in the following way, under

the usual conditions:

g(r+8) = E(T)) + 3+(Poz)_ + -;— (508) -+ (Polog)
° ° (v1,17)
+ -%—!(g 0s) "o(VoVoVog)
with
S: =7 - T (vi,18)

Teking account of only the first two terms in (VI,17) would yield the
certainly incorrect result that the gravitational field does not
exert any torque on a rotationally symmetric satellite if its axis of
symmetry is normal to the radius vector. For this reason further
approximations are considered here, in contrast to Rep. 13 of this
contract,

In the following we shall use the following abbreviations:

§é: = (303) 53: = (S0s08) 54: = (8050508) ( |
> > > > ,19
A1’S: = (VOE)S Az,s: = (VoV%é)s Ay ot = (Vol/olfor

and for their scalar products:

> » > > > > >
(1) .A s 35yt = szqu’S a(3)t = 33...A3’s (v1,20)
Thus (VI,17) reads:
> >, > 1
g(F +3) = &(T)) +§k=1: KT (k) (V1,17 a)



1

»
The first three A _ tensors read (R: = rs):
?

A = +__(a+i§_21;22§_$)(1 387 7) + gg(Y'cos2¢-35)3rr +
R R R
(Vi,21 a)

8y-sin w-cos;g(;rw+gmr) + 1-51n ngw
M 4 3
R R

et 4
1
+

2 > >
158~17;-cos w)(73rrr-lo€r-grol ouru> .

1
—(3a +
R4

>

.2
+ 8y.cgs 2T T 4 2y 81n5@ cos @(410
R R

+58 oI+4eu¢n) -

_ éggrrr _ 2y.sin ¢-cos4g(24grrw+24e +2Se¢rr) +

g R?

(VI,21 b)

2 .2 .2
2y(4.cos¢-5-sin w)(;wrw+g¢¢r) _ 10y-sin"gsree
rt R4

+

BY-sinzw-cos%g(ngx+EAXr) + 4Ayesin @-cos @rpe¢ +
4 3 =
R R

2Y'sin3@ocos ¢(€X¢A+;Xxw)
3
R

» >
The calculation of A = (VbAz)s would already be somewhat cumbersome.

3y8
The terms with g and vy which are by a factor 102 smaller than the

ax-terms were, therefore, neglected in the next step. This simplified

>
tensor is designated by A}o,s=

> > » >
A3 2—{:‘;’rr01+5€ oloe +4eruru-IoI euoIoep-ewuwu-Exuxu -

. (Vi,21 ¢)
=358 s 4584 +5Io€rr}
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>
After the k-fold scalar multiplications with the Sk expressions of

the following kind are formed for the ;(k):
21y = nE + ((1e)3,
By = (n5)es°)8 + 0’?53052 é‘;%w s%s%)8 (v1,22)

*2

2(3) = (318" * B(3yp02" 0N ¥ (3]s "8 + mi3] o%a% )3,

(3)0p°

where as usually sP is understood to be (8:8°). The introduction of

the following tensors is straightforward:

EE‘;; - hgggo;p h(g): ) h(g)pgp hg;go' i} hgggopgp

ﬁ%gg i} hgggpogpd I!;(g): } (g)po’po (v1,23)

(u), _ (n)  spon

1(5) = P(39p0nt

Because of

205,01, P B, ofe? 25,8, % L §.. 3
(V1,24)

the following expressions result for the 3(
2.0, 2w .}

S 6(1):[ + h(1)oeu

20y = 5o fR 00T + (n{2) TR } ;

) (w)
g ...{ (3)o I+H(3))oI + (h(3) oI+H(‘;))oe}

(1)

¥

2(3)
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" oy = i) - BER) - 550
52..{:'3(2) + §Eg§ogu} ‘2 B (VI,25 a)

P TR PUTS RSO BY Sn RS
2(3) = %3 E”(s) R(3)° u}~ S3008(3)

]
~~
-—
~—

i

1 ]
N
N
~—

L

]

[92]

to
~~
N
~

respectively, with the abbreviations:

;(u) _ 0( ) L o >
Rt = B3 HCO MR CI
300, L uf) LA P L .po.t
), _ w) >(w) > 4,0 T *o =
B59e = B53e0T + 4053 T3yt T (Bz)el * H(z))el
The quantities
1 (u) (v1,27)
Pt = o)t Re)es
need, of course, not to agree with the Ek s and are, generally speaking,
simpler than theée.
Ty =+ La v Jusbrecos’ey
(1) B3 22
2
EE:% = - lg(}a + 155-17;'008 )3T &+ §-z-(sin @ecos @)o¥ (VI,28)
R R R
E(w) = (4e cos ¢ + oPsin ¢)esin ¢
(1) =" 5K
and
oy - {Lpte + TL 00 0ym | 180000 g coq ol
(2) 24 R2 D
2 2
*>(r) 1 15p-17y-.cos @ > 1 158-17Y°cos @ \»rr
R = = —(3a + I + —(15a + 7 e o - (VI,29)
(2) N R2 R4 2 ’
- *ggg wsin PscOs P + g%gxxsin2¢-cos2w + g{-(4-0052&0 - 5~sin2w)gww

R R
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glo)y_ 82 (sin gecos )T - 2BLETToin bucos ¢ + (2.c0s%p - 5.5in%)2T¢ 4
(2) r7 R/ r®
v X290 Pecos @ + gxsxxsinjwtcos ") (vi,29)
R’ R’
ﬁ(x) =+ glgrx0032¢ b 22O @.cos @
(2) r® RO
and
Ty = - 2t - 5ot
. R (V1,30)
s\r) 15a 3T _ ,errTr

In calculating the torques expressions of the form

ﬁxa(k)dm

occur in the sections (6.14) and (6.15), which can be rewritten in the

following way in order to facilitate integration:

->

>
R(k) and Sk are tensors of the k-th rank; the k-fold scalar products are,

therefore, scalar quantities:

(w), _ 2

.

o

, a5} gg (vi,31)

The (k+1)-th-rank tensors ﬁ(k) are of the form

> > >

T = D ol
(k) (k-1)
5(k-1) being (k-1)-th-rank tensors. Putting:
>

S2o: (3_1) =3 BQ’ SB...D(4-1) =3 BB (VI’32)

we have, because of

S. = 308 (v1,33)
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by way of example:

- - - > > > ,* > » * ->
SB"'T(a) = (soSz)-°-(D201) = s.\sz-.nz)ol = BoS+I = 8,8 (v1,34)

Since analogous relations hold for all k, because of 8x8 = o only the

(n)

remaining terms with ﬁ(k) must be taken into account in gkg(k):

sxa a )" > 2 > > »> >
SR (x) ~ Sx(agt)eu) = 'euxsag % “%n (s“gtg) = (S“§§§)Xe (VI,35)
As in (VI,34) it is now shown that

2 (1)., Sa(3) = §3“§§gg’ EQE‘;% =° RE%% (71,36)

holds. Thus, we obtain

;XZ(1) = (S R%‘,’;g)xe
3&5(2) - (S ~-R§“g) (V1,37)

.S,X;(B) = (S "'R

Since the tensors B(k) in (VI,25 a) and Rgﬁg in (VI,37) are constant
quantities they can be placed in front of the [...dm-integrals. Since

a symbolic way of denotation was used throughout the paper all equations
written down up to now are valid in all coordinate systems, as, €. g.,
in the system of the main satellite axes. Thus all integrations./:..dm

can be reduced to integrations‘/%kdm in, e. g., the system of main axes.

(6.132) Hints to the Symbols Used:
(6.1321) The coordinate system:
Throughout (6.131) spherical coordinates having the earth's center

as origin are used:
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r: along a radius from 0: O<r<<+ 00
¢: along a meridian from N to S: 0°%€ ¢<180° (vi,38)
A: along a circle of latitude counted from any

fixed point: 0°C A 360°.

Accordingly, the basis vectors used have the following directions:

, € 2 direction of radius vector from O

, € 3 direction of meridian to south (V1,39)

o O
€ ~
&
6

il

y? € ¢ direction of circle of latitude to east or west,

depending on the manner of counting.

Since the indices r, ¢, A denote the spherical coordinates it is,
of course, not alloved to sum over them. Instead of this, summation is,
for example, carried out over p, o, u, u according to the Einstein

convention.

The basis vectors 3p, 50 are generally not normalized; their scalar

products
(2.2) =tz (8°.29) = :g°° (8°.2)) = 6 (=6 )

(v1,40)

are, as is well-known, the components of the unit tensor I. For (VI,39)=

- -> T &Y
(er r) = (e"+e”) =1
> > 2 +p @ -2 (
(e e )=1r (e7+e") = T (VI,40 a)
9 ¢
> - 2 . 2 A o) -2 . =2
(exaex) = r .sin“e e"se") =1 “.sin" ¢
Hence the following unit vectors are obtained from (VI,39):
2 . Iz _ p2¢ —t2 = r&sin ¢ (V1,39 a)
°r T % roe T T resin @ A ’
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The transformation to other coordinate systems {%'ﬁ} is performed by: *

4

;=_3_>L'.f
Ix'° e ox®

Cy) (VI,41)

(6.1322) Symbolics:

The "57" sign introduced in (VI,16) designates, of course,

V: - gu:;é? (V1,42)
X

In (VI,17) the "o" sign is used for the first time to denote a
tensorial product: from ;p and 2% the basis tensor

2P0l - ;2°° (V1,43)

is formed, for example. Thus we have, e. g.,(product rule!)

* _ »0 a *p 0 > 30 % » _ =0 _(»p > >0 > N
(Jolfog) = e o-—(e o= g) = eo(eog ) = ¢eofe [ 08 o t€ 08 o of =

ax axp 107y ’
< _p »U B > K 14 >0 14 > o >
= e o{( ]—(;ue Yo(g ,peu+eu ]:pg ) + eo(g 0,05 tE Lo ]’;Cea+
B M s W pe U a ne ~ (V1,44 a)
g y O upeu+ [;},cg et r;p f;;g eai} -

Op. o
¢ u{gu('aEp“l:aﬁl:p,oﬂr:ou]—;p) S P
nox n o x
t e y 0 r;°+ € ' 0 T;P te ,pyé}

Of course, nobody will calculate in this way, but one will first calculate

» »0 U+ >0 B » ne o0
= e = e + = A VI b
(fog) = e"olee)) | ol &, +e&e )=Are, (VI,44 b)
and then
b d _ >1 oep _ +10 (s} »0 O, 20 > >0 »
(P@A) = e o(Ap e c),u = e o{?p 2ot A (e ICOM oeo’ui} (V1,44 c)
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A AN
'S

"(
with
. > . > *0 .__p >H
®o,0' T T;oeu e ot = = [o® (v1,45)
and
" . - uu.l -
Toot = 8380, 0*600, 07800, ) (V1,45 2)

In (VI,17) also the n-fold scalar product appears for the first time:

- > _ L d hd > .
(2080808)+ -+ (80F0g)t = (Z0b0d)..(foz)(d-8) = (Zob)+(F)(2-7)(d.2) " 16
- VI,4
- (B-8)(3-F)(E-02
as, €. g.,
ped hd *0gY pPOHP> POUUSAR »
S_eeeT = S eee(T = S P o =
3777 0(3) T (agy® ) (T80 00) = SageT e e
- swp'r"""“'é“.;'“u - sude°°”“€ (VI,46 a)

(where the sequence of the indices with S is relevant!) If a tensor
equation is needed in the components of an arbitrary coordinate system

one has to multiply simply with the corresponding basis tensor, e. g.:

1. 2 = »2 1
R =Raooo(e 31 )

1 >
13 JeesoR =

(((R-8%)-3,)-8))-8" - (3,
(VI,47)

oD

&.(3,-(8,- "0

a fact which enables us to calculate without reference to a special

coordinate system.

(6.14) The Equations of Motion in the Earth' System

The "earth! system" is in the following understood to be the system
of refernce of the unrotating earth; one may, therefore, consider the

system to be an inertial system, in very good approximation. The
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equations of motion read

- > >
mb_ = K: = JdK (V1,48
> -.b > > > ﬁ ‘/'-b
Joely + uyxJ eug = Mo = (r-r )xdK (v1,48
with
2w
> dr > 2 > >
b : = —= Jgt = {% I - so%}dm (vi,49)
dt
We consider here only gravitational forces. Thus we have:
> »»
dK = g(r)dm (V1,50
-
aM = (?-?g)x§(§)dm (V1,50
or, because of (VI,17 a) and (VI,18):
ak = F(¥ +8)am = {23 +):1—-E d (VI,51
= 8\Tg = 18\ T4 - K12 (k) m »5
aM_ = 3x2(¥ )dm + Z::l—gxg dm (V1,51
s s — k! (k) ’
Using (VI,25 a) we obtain:
hat >, - - 1+ > 1% -
dK = g(rs)dm + sdmoB(,‘) + 282dmuB(2) + 683dm--oB(3) + oo (vi,s2
-> >
aM_ = Sdmxg(T ) + (S dm<R g %)xg %(Ssdm--Rg ;)xeu +
(V1,52
(s dm~HRE g) + e
Because of J}dm = FSJ;m in both equations (VI,52) the term j%dm cancels.
Therefore, the final form of the equations of motion is:
- >/ » 1 > <> 1 > >
b= &(F) + 2l11('52..13(2)) t = (33-.-}3(3)) + e (V1,53
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* - > T > . * »(u) - lo“-b(u) -
Js'ut + utXJs'ut = (Sz.R(1))xeu + 2(S3 R(z) xeu +
1 . (V1,53 v)
3 e 00 n rg o0 0
+ -6-(84 (3% xe o+

where 5&, etc., are to designate chbg)dm from now onwards.

The equations (VI,53) are valid in all coordinate systems; the
system of reference is, of course, the earth' system defined above.
As usually, the transition to components is brought about by scalar
multiplication with the corresponding basis vectors.

The rotation vector Et contains the total rotational motion of

the satellite with respect to the earth' system; its direction is such

that for a point at rest in the satellite we have

T=v_ + utx(r-Fs) (V1,54)

where ¥ is the velocity in the earth' system.

in
(6.15) The Equations of MotiontOrbit Systems

Some people prefer the representation of the equations of motion in
a system of reference whose origin is the satellite's center of mass and
whose rotational motion ﬁé with respect to the earth' system is fixed
in a certain manner, e. g. such that the first of the three Cartesian
unit vectors shows into the direction of ;s (i. e., from O to C, in Fig. 1)
whereas the second one represents the normal to the instantaneous orbital
plane of the center of mass, Such a system of reference will be termed
"orbit system", in the following. Let 2 be an arbitrary vector, g its

l-

time derivative in the earth' system and & in the orbit system. Then we

have:

2 =2+ upxa (VI,55)
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and, particularly, in analogy to (VI,54):

> -> - &
V=¥ o+ Upxs (V1,56)

for a point at rest in the orbit system., The rotation vector
- - ->
u o= Uy - U (vi,s57)

then describesthe rotation of the satellite with respect to the

orbit system.

The equations of motion now read:
> ->
mb! = K': = JdK' (V1,58 a)
<> > > o hd - 2
. . = te
Jgedg + U xJ_eu = M!: /;de' (VI,58 b)

- -—
where dK' is the force acting on dm in the orbit system and bé is the
acceleration of the center of mass, again the orbit system. On account

of the special choice of this system of reference we have
b! =3 (v1,59)

The derivation of M; can be performed from (VI,48 b) via (VI,57) and

(v1,55)

> > > 2 > > - . > » > - -

JS.(uS+uB-quuS+quus) + (us+ub)st-(us+uB) =M, =
> * > - = - > > P (VI,60&)
= M1 . . .
=M o+ J (uB+quus) + upxJ (us+uB) +u xJ_eup

and

> - - > T s - T o > S - ? o

' . . . = - . - .

ML+ T [quuJ +UpxJ eu  + u xJ Uy = Mo - J_cuy - upxd eug (VI,60 b)
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'S

N

respgctively., Because of

{?92 > i} > > _ - E > xﬁ = 42 ¢(
S - S80S [uBXus = =38X X uB s = . +SX us

g

» » -> > 232 » 3] » > > » > > » >
122 -sos U + u xqIs -Sospeuy -qu(sos)ou - x(sos)-uB =

s ]
(vi,60 a)
bd > > > e
= +8X<U,08°U_+u _OS°u
the left side may be transformed to:
> > > S\ > > > > o,
Ya] . - ! - .
M! +‘j;x2(usos) updm = M! - 24 xS, d, (Vi, 60 e)
such that:
- > * 4 > T, > >
| - - - . .
Ml o= M_ - J_.ug upxd eup + 2u xS, g (vi,61)

Thanks to (VI,58), (VI,59), (VI,60) and (VI,61) the equations of

motion read, therefore:

-
K' = o (V1,62 a)
ERE TS O S SN IO SRR (V1,62 v)
s g T UgKIgTUg = SUSXS,cup = T gl T UgXigtup
with
> > ’(V) 1, »(u) > 1,* o(u) >
-~ e e — s 00 i eas o VI b
MS ( ( ))Xe 2(55 R(z))xeu + 6(84 (3))xeu+ ( ,53 )

ﬁB is given or is yielded by integrating (VI,53 a), i. e., from a
knowledge of fs(t), ?s(t), gs(t). (V1,62 b) can, therefore, be used
to determine as(t). The calculation of at(t) from (VI,53 b) and of 3é(t)

from
=1, -3 (v1,57)

seems to be simpler.
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(6.2) On the solution of the heavy asymmetric gyroscope, using the

properties of the Lie operator

by F.Cap and A.Schett
We consider an asymmetric gyroscope with several torque producing
forces. A spinning satellite is essentially such a gyroscope; the
torque may result in a change in satellite orientation that affects
the thermal balance, the operation of solar cells and various scien-
tific measurements.

By means of an operator we can represent the gsolution of the
heavy asymmetric gyroscope such, that the contributions of the diffe-
rent torques appear separately. In other words, using a splitting up
procedure of the afore-mentioned operator we can represent the solu-

tion in the form, e.g.,:

t
>
A
U= Uy obal + Mifa(T, M, u) dt +
a=0 t 1
symmetric o
forcefree

A f1a(1, M, , u) dt

+
e o+

R
I
o

where'G indicates that this function can sometimes be represented in
a global form.

The torques Mi (i = 142,3...) appearing in the integral terms
usually differ by their order of magnitude. For a given degree of accu-
racy, therefore, the number of summation terms a to be computed de-
pends on the integral considered. The afore-mentioned solution repre-
gsentation renders it possible to compute the single integral terms
irrespective of the other integral terms.

Especially we shall present the solution of the equation descri-

bing the heavy asymmetric gyroscope in the forms:
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-
(§.211) Solution = Solution (heavy, symmetric) + contributions from
asymmetry.

(6.212) solution = Solution (symmetric, forcefree) + contributions
from asymmetry and forces.

The 1-st term is exactly known. The 2-nd term can be split up into
geveral additive integral terms:

a term containing the contributions of asymmetry; this term vanishes

if the satellite (gyroscope) is symmetric.

additive integral terms containing the torques Mi(i=1,2,...)
/ j( E Mifa(r, M., u)dt
« I

i.e., these terms vanish if Mi = 0

(6.213) Solution = Solution (asymmetric, forcefree) + contributions
from forces.

As to the effectiveness of the aforementioned solution representations
one can generally say, that it is advantageous to put the main contri-
bution of the solution in the 1-st term and perturbations in the re-

maining terms.

(6.21) Solution of the equation describing the heavy asymmetric gyro-

SCope.

Using a reference frame (X1, X2, X3) fixed with respect to the body

the equation of the heavy asymmetric gyroscope reads

M, = I,u, + (I3 - 1,) U Uz
M, = 12ﬁ2 + (I1 - 13) U ug (Vi,61)
Mz = Igug + (1, - I1) uu,
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where I1, I2, I3 are the moments of inertia, Uyy Uy, u3 are the angu-

lar velocities. u,, U

1 o9 ﬁ3 are the angular accelerations and M,y M

2’

M, are the torques in the reference frame (1,2,3). In Eq.(VI,61) we

3
have substituted X1, X2, X3 by 1, 2, 3.

Using the well-known relations

sin y sin B + é cos ¢y

u, =&
u, = & cos y sin B - B sin y (v1,62)
uz = & cos B+ ¥

where a, B, y are the Eulerian angles defined as follows

z axis x' axis x' axis
<:;[: 2B <:;Z: P <:;[; Sy
3 axis X axis 1 axis
where x, y, 2z are the axis fixed with respect to the space, x' indi-
cates the nodal line of the two planes (xy) and (12).
Differentiating u; (i=1,2,3) in Eq.(VI,62) with respect to %

(time) and substituting the se quantities into Eq.(VI,61) we obtain the

following equations

%+ &b, + &éh12-+.éh13 + By, + &2h15 + Bahy o+ &ihyo

+ By, g = 5,(B,ys0) (V1,63)
B+ ﬁh21 + yéh,, + th23 + é}h24 + &2h25 + é&hzé + &?h27 +

+ Brhyg = S,(Byysa) (VI,64)

. .. .2 .. .- .2
ah31 + aﬁth + & h33 + th54 + ash35 + Bhye = SB(B,y,a)(VI,65)

P
+

where
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h,. =
13
S; = 8;(Brasy);
_cos ¥y
" sin vy
_cos B
" sin B
_ cosy
" sinysing
-1
= sin B
M
I1 chb
_ cosysing
sin vy
= 8in B
_ cosycosp
8in vy
= o, sin B
_te
5 C
= cos B

. . 2
= azsin y cos y sin B

.2 :
= -a3s1n y sin 8

] B
W WY

hij(ﬂra’7)§ i,j =

i=1

h

h25 = - azsin 8 cos B

h

h32

24 =

28

1,2,.00

1243

1 siny

cos E

"% sin B

_ cos y
- 71 sin ¥y

_cos ¢
sin y

_ COSECOSZ
26 © T

gin vy
_ _ Los v
sin vy
I1-I
I

3

2

= - gin B

COSxCOSE
= o

)

%o

h34 = a3c0327 sin 8

h,, = - i
36 @zcos y sin y
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(v1,69)
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(VI,71)



Inserting B from Eq.(VI,64) into Eq.(VI,63) we

where
by, +hyg - hyoh g - hyghog
949 = 1= h, b
. hyp + hyg = hygh, g = hoghys
12 T - by b
Mgt e - hy4By3 = Boghys
93 T - by by
M3 . M5 - hyohys
Qg =72 b, b,5° Q94 1 = By b,
) 1
Qe = -7 2 By B s

Inserting & from Eq.(VI,63) into Eq.(VI,64) one obtains

B+ Yaqy,

. ., o2
+ an22 + Byqz3 + « q24 + S1q25 + 52q26 =0

where
_Bop + Bpg - hygBpy = Byghay
1 = T - by 5h,,
hoz + hpg = hyhyy = hyghyy
Qo = 1 - hyhy,
Py * Pog - hy4Poq - yghoy
Qo3 T - h b,
. Bag - Byghpy by,
= _ H = -
24 T - hh, 25 %7 - hy5hy,
P R
Qe = =7 - by 5hy,
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. '0 .. .2
@+ ayqe, + an12 + Byq15 + a q14 + S2q15 + S1q16 = 0

(v1,72)

(VI,73)

(vi,74)

(V1,75)



".
. éubstituting o in Eq.(VI,65) by Eq.(VI,72) we obtain
.8 .' .2 .2 [ ] ..
T+ aBagy ¥ Xazp * Brdgy ¢ AY¥ag, + Brags + Syasze * Siazq ¢
+ S35 = O (v1,76)
30 = Pz * By ¥ Bag = Qyaligyd a5 = =G5ty
Q32 = Bsz = QP35 136 = ~Y5P39
(VI,T77)
33 = P3¢ 137 = ~d36P3y
U4 = ~U1P3 g = -1
Eqs.(VI,72), (VI',74)9 (VI,76) read
L) e e .. .. .2
a + a7q11 + an12 + B7Q13 + Q14 + 32q15 + s1q16 =0 (VIQ78)
A e o P S 02
B + taq,, + aBa,, + Byq25 + & ay, + S1q25 + 8,05, = 0 (vI,79)
o P 02 '2 e .
7 + aBagy + a'qz5 + Bragz + ayqz, + BYdzg + Syazg +
+ Sya57 + 53q58 = 0 (v1,80)
qij = qij(B,a,y); iy, J = 1,24y eca
(v1,s1)
Si = Si(Bvaﬂ’); i=1,2,3
Eqs.(VI,78), (VI,79), (VI,80) can be written in the form
o = f1(&, éy Yo oy By 7¥)
B - fz(&v év ¥s ay By 7) (v1,82)

.7. f}(&’ By ';', a, B, 'Y)

For the forcefree, symmetric gyroscope, i.e., a, = O,

3
S; =0 (i =1,2,3) (see Eqs.(VI,67), (VI,69), (VI,71)), Eq.(VI,82)

‘ reads
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<3 ]

= f1ffs(&, éy ?1 Qy B’ 7)

™

= fszs(&v ér ?, ay, By Y) (VI,BS)

Y = f}ffs(&’ é) ?9 ay B’ 7)

where £,

i ffs (i = 1,2,3) indicates forcefree symmetric

For the forcefree asymmetric gyroscope i.e., Si = 03 (i = 1,2,5)

(see Eqs.(VI,67), (VI,69), (VI,71)), Eq.(VI,82) reads

Re
[}

f1ffa(&’ é’ ?’ oy B’ 7)
B = fsza(&’ év ¥y oy By 7) (Via84)

Y = f}ffa(&’ é’ ?’ ay, By 7)

where fiffa indicates the forcefree asymmetric case.

For the symmetric heavy gyroscope, i.e., ag = 0 (see Eq.(VI,71)),
Eq.(VI,82) reads

R
]

£1on(&s By ¥4 @y By 7)
B = f23h(&’ é’ ?9 ay, B, 7) (VI,BS)

T = fish(a’ és is ay B, Y)

Eq.(VI,82) can be written in the form

21: &1 = a, Z4: B, = f,
Zy: &, = f, Zg: Ty o= 1, (v1,86)
Zz: By = By Zg: 1, = 13

The sign ":" indicates that &1 = 21, €.8.
For domasins, where f; (i = 1,2,3) are holomorphic the formal solution
of Eq.(VI,86) reads (see Ref.1,16)

7. = e'Dy (v1,87)

where
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) ) 0 vy 0
. 2. * -
3 624 2 dz5

a

6

(6+211) Representation of the solution S in the form S = Ssymmetric,

heavy + contributions from asymmetry.

Starting from Eq.(VI,82) we obtain for the operator D (see Ref.1)

3 9 0 0 ) 0
D=oye—+ B0+ e + f o + f = + f o~ +
2 dz1 2 dz2 2 dz3 1sh az4 2sh az5 3sh 626
) d 9
+ f1a.az2 + f2a.az4 + f3a.€;g (vi,89)

where fia (i = 1,2,3) indicate the contribution from asymmetry and
£ oh (i = 1,2,3) indicates the symmetric heavy case.

We write now the operator D in the form

D = D1 + D2
where
D, = f, —— 4, g O (V1,90)
2 = 1a'6z2 2a°dz4 3a'626 ’

and D, is defined by (VI,89). The solution Eq.(VI,87) reads in this

case

t(D1+D2) tD

tD
Z; = e z; = e 2, = e z. + E é [D 0%z, ] dt(vi,9)

The subscript a indicates that after applying D2D on z
tD1Z

i* %3 has to be

replaced by e i+ In Eq.(VI,91) the operator D, is the operator for
the symmetric heavy gyroscope.

The solution representation is recommandable, if the deviations

from the symmetric gyroscope are small. In this case only few terms
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of the sum in Eq.(VI,91) have to be taken into account. For the
evaluation of the integral appearing in Eq.(VI,91) suitable methods
are already developed (see Ref.2);in these works also the problems
of error estimation is treated.

Moreover we will use another method for solving Eq.(VI,61) as

proposed by GROEBNER (see Ref.94). For that we put

— = A (v1,92)

where A is a parameter. Using this parameter we obtain

fia = Af?; (i = 1,2,3) and the operator D reads
%
D = D1 + D2 = D1 + AD2, where the operator ﬂ; reads
9 * _0_ * _0
ﬁ; = fTa’azz t f2a'dz4 t f3a'6z6 (V1,93)

where D, and D, are given by Eq.(VI,89) and Eq.(VI,90), respectively.

With (VI,87) the solution reads

*
t(D,+D,) t(D,+AD,) ® .
172 1 2 3
Z, = e z, =€ z, = E A gj(t,zi) =
3=o
Salt
=g (t)2,) + }J 1 P (V1,94)
tD
where go(t,zi) =e 'z, and €34 can be calculated by the following

recurrence formula (see Ref.94)

t
[o}

zi—)go(t-r,zi)

The subscript z; — go(t-t,zi) indicates that after applying the

»*
operator D, on 851 %y has to be replaced by go(t-t,zi).
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. ihe proof of formula (VI,94) and formula (VI,95) is given in the
work by GROEBNER (see Ref.94). D, is the operator for the heavy sym-
metric gyroscope.

Since the quantity A defined by Eq.(VI,93) is usually small the factor

Ad (3 = 142,3...) influences the convergence in a favorable way.

(6.212) Representation of the solution § of Eq.(VI,61) in the form

5 =8 + contributions from asymmetry and forces.

symmetric, forcefree

In this case we write the operator D in the form

0 ) [°) 9 d
D = QA e + B —— 4 ;y e 4 f - 4 f - + f o —
2 az1 2 623 2 625 1sff dz2 28ff az4 3sff 626

0 0 0 ) 0
+ f o — 4 f o—— f . + f o—— f —— 4
1h az2 2h dz4 3h 626 1a az2 2a 624

+ £ =2 (VI,96)

Ba'az6 !

where f., (i = 1,2,3) indicate the contribution of the external

force (heavy), f, and f, (i =1,2,3) are explained above. We put

isff
now
D = D1 + Dha’ where
0 () 0 9 0
D = £, o= 4+ . . + £, e— <+ £, . + £, o= +
ah 1h 6z2 2h az4 3h dz6 1a az2 2a 624

+
la]

N
®
[
o
N

and D, is defined by Eq.(VI,96). Solution (VI,87) reads in our case

tD t(D1+Dha) 4
. Z [+

x
+ i:i -(%L [DhaDazi]_dr (v1,98)

(vI,97)



D1 is the operator for the symmetric forcefree gyroscope, .
i.e., etD1zi is the solution of the symmetric forcefree gyroscope.
Taking account of the different torque acting on the gyros-

cope M,, M, and M, in Eq.(VI,61) reads
My =S M5 My =2 Myi5 Mg =% Mg, where is1,2,... (VI,99)

indicates the different torques.
Considering a satellite considerable torques are, e.g.:
the gravitational torque, the drag torque, the torque caused by

radiation and the magnetic torques. Splitting off the operator

Dah = Da + Dh’ where
0 ) 0
Da = f1aoaz + 2aoo-z + fBa.dZ (VI,100)
2 4 6
0 0 0
D = f5, * fopega * th.—a—z— (Vi,101)
2 4 6
D, again can be written in the form 2T—Dlh (1=1,2,3...) = D s
where
0 0 0
Dlh = glh'azz + f21h.a—z; + fBlh.‘a—zé, 1=1,25500 (vi,102)
and
fion = S21%955  fo1p = S91%s5 * 521965 T3ip = S11937 ¢
+ 831034 (VI,103)

Eq.(VI,98) has now the form

tD

]
%
o]
o e N
+§ J(-(ﬂ)— Dhln"‘ziJ dv (VI,104)
1 !
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The subscript b indicates, that after applying the operator, z, has

tD1z

to be replaced by e i* The last integral term in Eq.(VI,104)

vanisheg if Mi(i = 1,2,3) is equal to zero. The solution representa-
tion Eq.(VI,104) enables us to evaluate the single integral terms

numerically independently from the other terms.

(6.213) Representation of the solution S of Eq.(VI,61) in the form

. + contributions from forces.
5= Sasymmetrlc, forcefree S

In this case we write the operator D in the form

D = D1aff + Dh’ where the operator D1aff reads
9 0 0 0 0
Diars = %275z, * Pogar * Yooz * Tiare s, * fosrras t
1 3 5 2 4
0 i) J 0
t f}sff'az6 + f1a'022 + f2a'az + f}a'az (V1,105)
4 6
D f S, o, ¢t (VI,106)
h 1h°o 2h° o0z 3h°0z ’
2 4 6
The solution (VI,87) reads in this case
2 tD E(Dyars*Dh) %Dy qts
. = € Z. = € 2. = € Z.
1 1 1 1
00 P a I
t-1
+ 5 J. 1—371— [éhnzi‘]_ dr (vi,107)
o to a

D is the operator for the asymmetric forcefree gyroscope.
laff D

. taff s .
Putting e zi=z:n and gplitting off the operator D1aff in the form

~ % . . .
Diger = Dypg + AD,, where ﬁ; is defined by (VI,93) and D s is de-

fined by Eq.(VI,105), we obtain the solution in the form
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tD t(D1ff+AD2)

taff, _ o 7, = § AJgj(t,zi) - (V1,108)

. € .
i1 i 1 J=o

00 .
go(t,zi) + %_1 Aagj(t,zi), where g  is given by the relation

tDypp

i -~
3>
go(t’zi) = € z; and gj+1(t’zi) = é [%ZSJ(T,Zi) }z.-&g (t,z,)dT
o i o i

(VI,109)

With Eq.(VI,108), Eq.(VI,109) reads

% -
tD Q0 . 00 o
1£f 3 (t-1) a
z, = e 2, + Z A gj(t,zi) + EO é - lPhD z%} dat (VI,110)

3=1

(o)

where D1ff is the operator for the forcefree symmetric gyroscope.
If several external forces are present we obtain in analogy to

Eq.(VI,104) the solution Eq.(VI,110) in the form

t
tD [¢¢) . o] a - 7
1 2 (t-1)% < «
Z, = e + %_1 A gj(t,zi) + i { = \a D, 1D 2, . dt

(o]
(VI,111)

This representation is advantageous insofar as it contains several
additive integral terms, which can be computed separately. The number
of summation terms a = O,1,2,... depends on the order of magnitude of
the torque appearing in the operators D, (1 =1,2,e0...). For the
numerical evaluation of the integral terms we refer to the work by
H.KNAPP (see Ref.2, e.g.).

Concerning the stability of the solution of Eq.(VI,61) we refer
to the books by KLEIN F. and SOMMERFELD A. (see Ref.45) and by

GRAMMEL R. (see Ref.96), in which this problem is treated in detail.
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Appendix

In the book, "The General Problem of the Motion of Coupled
Rigid Bodies About a Fixed Point", by E.Leimanis, Springer Tracts
in Natural Philosophy, Vol.7, 1965, p.133,the Euler Poisson equations

of motion are solved by Lie Series. These equations read

11\.11 + (12 - 15)u2u5 mg(Bzo - Yyo)

Ly, + (I - Iz)ugug = mg(yx, - az,) (V1,112)

13ﬁ3 + (12 - I1)u1u3 mg(ayo - on)

& = Bus - ru,
B = yu, - aug (VI,113)
‘.Y = auz - Bu1

where Ii are the moments of inertia, u, are the angular velocities,
142,3 indicate the axis fixed with respect to the body, m is the mass
of the body, gm is the weight of the body, ?o = (xo, Yoo zo) indicates
the position of the mass center. (x, y, z) denote the reference frame
fixed with respect to the body, a, B, y are the direction cosines of
a fixed axis (Z axis of a space fixed reference frame, e.g.) with re-
spect to x, y, 2. E.Leimanis represents the solution of Eqs.(VI,112)
and (VI,113) in the form z; = etDzi, where Z, = u,, Z, = Uy, Z3 = U,

Z4 = W, Z5 = B, Z6 = y and the Lie operator D reads

- I,-1 I
bg 23 9, ng - -
D = {11(620 - yyo) - I u2u3J au1 + T, [(yxo azo)
I,-I . I,-I
1773 ]o gl_g_l:( 2771 ]a
- —=u.u, |— + ay - Bx ) - u,u, | —— +
12 173 duz I3 o o I3 173 du5

¢ d 0
+ (Bu3 - yu2) %; + (7u1 - aus) T (cxu2 - Bu1) 37
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As shown in this paper we have the Euler equation containing not
only a term for the gravitational torque, but also several other
terms corresponding to other torques (drag torque, centrifugal
torque, etc.). Furthermore, as far as the solution representation
is concerned experience (see Ref.2, e.g.) has shown, that a repre-

sentation as it was given by E.Leimanis is not recommandable for

numerical computation. A rearrangement of the series etDzi by

splitting off in the form et(D1+D2)zi = e, R, as it was

i
done in this report, influences the numerical evaluation in a favo-

rable way, if, €.g., etD1zi>> R.
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(6.3) The Integration of the Equations of Motions

(6.31) Transition to component representation
(6.311) Derivation of the general formulas:
(6.3111) The Eulerian matrix:

The so-called Eulerian angles are an appropriate means of describing
the rotation of two rectangular normalized trihedrals with respect to one
another. Since the transformation matrix appearing in this case - the
Eulerian matrix - will play a crucial part in the following we shall

summarize here the most important formulas:

4:)
-2
-> » >
System I: i;, ié, il
P
System II: 19 15, 13
Fig. 2
Now we have:
> > > >
M . i = it
it =a i, I (VI,114 a)
Bonton T bpu (VI, 114 b)
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with:

&,y = +ac-abe a4, = -ac~abe a13 = +ab
a,, = +ac+abc a,, = -ac+abc 8,5 = -ab (vi,115)
a31 = +bc a32 = +be a.33 = +b
and the following gbbreviations:
a: = sin a b: = sin B c: = sin v
- _ (vi,116)
a: = cos a b: = cos g c: = cos y

Since the apo are representing transformations between Cartesian coordinate

systems there holds:

for such reason in the following there hav been no regaré to the position

of the indices, in contrast to bp and ¢ in (VI,121). “here the summation

o po

convention it demands, the index concerned is thought to be lifted.

If the vector @ of the rotation of the two systems with respect to one

another is chosen such that the relation

1 I
->

2 -8 +uxa (VI,117)

v

holds for arbitrary vectors, where 2 is the time derivative in System I,

we also have:

% - (apeavi)T) + (ap-aby)iy + (a+£§)§% -

(vi,118)
- > - e P T,
= (c5+bc&)i1 + (-c5+bca)12 + (Y+ba)i3
Besides, it follows from (VI,117)
I I b1
=0 +ux1 =12 (Vi,119)

ca s s . : > .
j.e., it is irrelevant in which of the two systems of reference u is

differentiated.
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. From now on the system II, i.e., {;1,12,1;}‘ is identified with the
system of main axes. In the following, the "system of main axes" is
understood to be that Cartesian system whose instantaneous coordinate

lines are parallel to the main axes of inertia of the satellite.

(6.3112) Earth' system: Fixation of the Fulerian angles:

The Fulerian matrix treated in (6.,3111) connects two Cartesian systems.
It is quite obvious that the tensor components in Section (6.13) were
given in spherical coordinates; it is, therefore, necessary to transform

to Cartesian coordinates. Viz., the introduction of the following system

is expedient:
->

1;: from O to the origin of the A counting in the equatorial

plane; i. e., to ¢ = 90°, x = 0°

>

il: from O to ¢ = 90°, A = 90 (Vi,120
2

->

i

é: from O to the north pole; i. e., ¢ = Oo, A not determined.

Then we have:

gr = et = (i;ocos A+ ié'sin A)esin ¢ + iécos @
> > >
g, - r28® - ({1.c0s A + T}+sin A)evecos ¢ = jeresin o (VI,121 a)
- -+
;k = r2sin2¢o3x = (-i%-sin A+ ijecos A)er-sin ¢
and
* »T . +>@ s\ . .
1} = € .cos A+sin ¢ + r(e'cos @-cos A - e sin ¢*sin A)
Ié = 8.sin Aesin ¢ + r(2%cos @esin A + Psin @+cos A) (VI,121 b)
bl T »Q .
13 = €cos ¢ - re'sin ¢

respectively, or, in a compact way

»> o?® 0 po?
e =5 ' = b" i
p e * € o

b

=c_e (vI,121)

O -
O
Q
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On integration of (VI,53 a,b) the Bulerian angles and the coordinates
of the center of mass are obtained as functions of time. With

&> >0

i =18 ¢ e v
0 L (Vi 122)
the satellite's position relative to the spherical coordinate trihedral

presented in (Vi,39) is given in a very illustrative manner.

(6.3113) Orbit system: Fixation of Fulerian Angles:
Cartesian coordinates are somehow introduced in the orbit system,
e. g. in a way mentioned at the beginning of section (6.15). We shall

use here another system, i.e., *)

i;: = +r&tsin ¢ i : = +o (v1i,123)

The instantaneous position of the satellite is then obtained either

immediately from Fig. 2 or with the held of

» -T > A .
i = +al!l e - a! re’ + a! re sin VI, 126
p 3p 2p 1p M (vz, )

*) If the unit vectors defined in this way are regarded as the System II

(change of designation! i'—»1) and those defined according to (VI, 120)
as the System I of Fig. 2, the transformation matrix is obtained from
(VI,115) with:

a: = 90° + A Bt = +¢ vy: =0 (v1i,124)
which, of course, leads to (VI,121). With the help of (VI,118) we
immediately obtain Ay

>

iy = +2(8%cos ¢ - ra¥

. oA
sin ¢) + rde sin ¢ = (VI,125)

ol eas > -
+&( i)°sin A+ i)ecos A) + X13

where the {é again represent (VI,120), i. e., System II!
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whé}e, in order to distinguish from the transformation coefficients
(VI,122) of the earth's system we write here al instead of a_ _ as

was the case in (VI,114) and (VI,115).

> ; > ? -> ->
(6.3114) Representation of Js-u +uxJ_u = N in the System of Main Axes:

This term occurs in (VI,48 b) with u

4, and in (VI,62 b) with

t
2 = Es' Because of
»
_ .po» _ 11 22> 33»
Jo =14 1o = J i+ i, +J iz (vi,127)
T = api‘p = (Gp+voarboaprbsay-cpy)i, +
+ (-cg+b5a+55&é-bc&?-abi)§2 + (vi,128)
+ (Y+Ba-b&$)§5
and
L 2
N = §°1
P

immediately the well-known system
et (0332228 L !
32252 4 (3033 - NP (VI,129)

32383 & (3%2. 0" WP - W

or
0
§° + B %Wt - (V1,129 a)
0 100
with
R DN N LNt L 1 130)
. I e — s = s = ’
1 X 2 22 3 55

results. Solving with respect to the second-time derivatives yields:

’” - .2 'B 2 "2 o - * 0
a = -Ecc(B1+Bz)a + b(B1° -B,c -1)&p - cc(B1+B2)ay +

1 o _ .2... Nyec Npec (V1,131 a)
* (14807 =BT )BT + ==+ —5-
J b J b
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5 = +b5(B,c%-B,5°)a° + Toa(B,+B,)&h + b(B,c -B,3°-1)af +
2 1 1772 2 1
) N, _ No (VI, 131 b)
+ CC(B1+B2)BY + -JT‘]-.C - ——-—J2200

“ - =2 2y.2 -2 2.2 2 =2,.2, .
Y = +cc((B1+B2)b -BBb Ya© + %(1+(B20 -B,¢ )b +B5(c =C)6T). a8+ (vI,131 c)

No _)
- *C+¥ °c
J53 b J11 J22

- .o -2 b -2 2 .
+ Bcc(B1+B2)aY + BBCCE + b(BZC -B1c -1)BY +

(6.3115) Earth's system: Treatment of the Remaining Terms:
->
It remains to give the components of Ms’ i, e., the right-hand side
of (VI,53 b) in the system of main axes. For this purpose we give the

following summarizing review:

a(n) _ o(n)so a(n) _ (n)2eo aln) _ (n)eoon
R(1) = R o€ R(Q) = Rpo e R(B) = Rpcue (vi,132)
§4 = ﬁsogogog)dm = I“BYb‘/; ePsYs dm :SQBszamb (Vi,133 a)
§3 = fgogog)dm = iaBY ‘/;asBsYdm = :SULIBY'{‘GLBY (V1,133 b)
& 2,2 - Bam = :5%B%T .
S, = ﬁsos)dm = 1apfs s”dm S I : |
Vi,133 ¢
> > 1
- I‘légdm -J_ = (s6®B.g%B)Y  with s: =l/%2dm
s ap
therefore: 11 11
S’ =8-1J etc. (vi,133 4)
Furthermore it follows from (VI,114) and (VI,121):
»p PO anu - .0 2
=b a i e, = bp a1 (V1i,134)
" Hence

(§2-ﬁ§11"; xe. = (s*P% -R(n)bpoa ™) xb sast{t =

( ? on (VI,135 a)

- g%Bpln), po s 123au
SR o} b aos n a’stbatu
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Since we have
- 51233y (V1,136)

/
;gz: = +1, if (apy) is an even permutation of (123)

with

-1, if (apy) is an odd permutation of (123) (Vi,137)

= 0, if (apy) is no permutation of (123)

Furthermore:
(V1,135 b)

1]

2 ..a0)y 2
(S3 R(g))xeu

_ «@pYp(n),pd oa n %
= S Rpc b abe a&Bbu amnbanul

2 L .2w)yos [ 0BYDs .. .p(B) pa ob we  arst m en
(g R3)I%8, = S 06 Roou®” Bar® ops® 2oyl )xb, el =

_ q%BYd,(n), pa, ob. uc m 2t

= S Rpcub b b- aababYaCBbu amnbantl (VI’135 C)

»
Thus, the summation of (VI,135 a) to(VI,135 ¢) yields M, in (VI,53 b)

3 1
and N in (VI,129),respectively, with x1, x% and x Z.

(6.3116) Orbit system: Treatment of the Remaining Terms:

In the moment equation (VI,62 b) the expression

-> > > W
*Up + 2u_xS,euy (vi,138)

-> -> > 35 >
N = MS - Js-uB - quJs
remains to be represented in terms of the components of the system of

main axes. Summary:

1 i° I -a 1€ (VI,114)

13 (vi,125)
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’

wrl = 4+ u!? = +kesin ¢ ut? = 4hecos ] (VI,125) .
B B B
According to (VI,119) we have:
S 0T (V1,139)
Up = up = up'l 0
Hence:
> & Lope WP, 20 00 _,p_, > VI.140
-Jgtup = -J 1og ug el = I ul 850t (VI,140)
> ® » 1B BY & 2 > 1Py 20_, _
- . = J ixi oi_e.ulal! ia =
u xJS up = +up p¥iy OlytUp 5ot Ay, (VI,1a1)
- B4 Py (123.B0_, 2
= +upiug apcbauaJ auul
- > woBY * > >, .0, 2 _
+2usx82 uB = 2usS i XIB 01Y uB apcl =
12 a» (VI9142)
- 2urPar g123,FgBote
B “po upas
with:
u; = +fc + &be ui = -fc + &bc uz = +Y + &b (vi,118)

->
The equations for M_ can directly be taken over from (vi,135) if

the b°% ana L of (VI,121) are given by

' = egi 1 = - ! =
c15 = +Tesin @ Cho r c31 +1
(VI,143)
bt 132 41 pr22. 1 Bt
r resin @

The rest of the cpO and b°°% vanish. (VI,1%38) is obtained by summing up

(VI,140), (VI,141), (VI,142) and (VI,135).

o - p1P% v = o 2° (vi,121)
0 po
;p - bvpcav ;u z = a' ¢! s (VI,123 a)
on P op Ou
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(6.3117) The Equation of Motion of the Center of Mass:

To obtain the coordinates of the center of mass as functions of time

the integration of

->

> >/ i 2 12 hy
By = B(F,) + 55 Sp0vB(p) + g5 S5 B(gy + oo (V1,53 a)

is necessary. Of course, here is no reason of giving the components

in the system of main axes. In section (6.13), é and the ﬁ(k) are given
in terms of spherical coordinates whose use is quite obvious under these
circumstances. In the following the index "s" is omitted in Tyy Py As

in order to simplify denotation; hence, r, ¢, A are the instantaneous

spherical coordinates of the satellite's center of mass.

gs = ?é = (r-r@z-rizsinzw)gr + (r2w+2ri¢-r2i2sin pecos v)a? +
2 2 . 2 2. )\ (VI’144)
+ (r“Aesin“@+2rthesin @+2r Qresin ¢ecos ¢)e
>/ > _ (s 2 »T 2Ydp . .
g(rs) = (;g+%z(5-y-003~¢))e - ;%e sin @*cos ¢ (VI,16)

According to whether the moment equation is solved in the earth's or

in the orbit system different Eulerian angles, i. e., different trans-
formations are gbtained. Since the resulting expressions are, however,
a'

equal, a etc. will not be distinguished in the following.

po’ “po’
) s
i =a_c_e (vi,122)
0 rp TS
1.3 ..3 - 1cop anm,  gPone
2m 02 B2) = om #ra’rn®sp®sm® B Coow =
1 ap bore (V1,145 a)
= o a c¢c_a ¢ B e
2m ra ro sg sp L]
12 - _ 1 _aoBY oabc..b HPoHS - VI.A b
6m SB"'B(B)— Tad araassatycracsbctce B Cupon (VI,145 )
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apyY

- 1s pHPone
6m

araasaatycrccspctu H (V1,145 ©)

(6.312) Specialisation on a Satellite Moving on a Circular Orbit:

For the numerical evaluation of the equations of motion, which will
be discussed in (6.4), the case of a satellite moving along a circular
orbit in the equatorial plane was taken as basis. Such an orbit is a
golution of the equation of the center of mass' motion (vi,s3 a), if

there one puts

B=0=7 5(2) =0 - ﬁ(B) (VI,146)

Then holds:

r(t) = R

€
~~
ot
~r
]
\O
O

(VI,147)

and therefore in (VI,144):

g, - -RA22T 4 AR - +—%€r (VI,148)
R
hence
« . [em
X =0 =)= - +——3§ - const. (VI,149)
R R

- + >, > T, _*
ip = +Ai} up = +Mj =0 (v1i,150)
yielding immediately
> 5 »
-J tup =0 (vi,140)
> s 2 , ., {po.123%a VI, 141
~upxJ cugp = +A\"a) al J 6Bna1 = (VI,141)
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. 22 2
= +)\2{22 33(J 33):L + aés 21(J33 )1 +

VI,141)
11 .22 93’ (vi,
1 1 -
+ a21a22(J J ,)1

> T e o5y  BgBOg1232a o0 (i 2533, 3522, 4
+2u_xS,euy = 2Aaj u SF76 = +2\ ( 8)3-u S 322)1

B 820 upa ( )
' (VI, 142
3011, 33 _, \22 1.22_, 2,11, 23 !
+ (usS 521-uSS a23)1 + (u 5°%a),-u 8 a21)1-
with
1 -, 2 d [ XN 3 S LA
ug = +Bc+dbe u_ = -pe+dbe ul = +¥+ab (vi,118)

>

Ms is obtained with

2(r) L-»r >(¢) _ & '("g -3
(1) = R(1) = 0 R(1 = 0 (VI)151)
from (VI, 135):
S R )y » - g%B (r) 110,y 148 1238n
(s, R )) xe STTR_4P' e Bb 8et0atnd
From (VI,143) comes
1
113 o 4 pr22 . 1 LA +% (V1,152 a)
Because of
-e. _ >0
o~ 8o
and
2
gyq = * €rp = *R = &34
follows from (VI, 121)
'o _ ,nc
b = gpub
3 2 !
b% = +1 bé = =R bé = +R (V1,152 b)
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Hence:

_ R(P)pi13y135%Ba1 ar 512337 L 2_{552 (s22.533)1" +

=

s T 1 1 35 3420 tnt

33 11 22 -5
+ a%a 31(s )1 + aé1 52(s :}

Furthermore, by reason of (VI,133 d):
(sPP-s%) = (3°°-3°F)

-
Because of (VI,138) N in (VI,129) and (VI,131) then reads:

22
N, = +(3%2-37%) (K% a 23+2—a%2a%3) + 2k (u? 2535, 3-qu al

N, = +(J33-J11)(i2aé al +22a' al. ) + 2X(u2811a' -u;SBBa'

11 22,42 e
N, = +(3 ' -3°) (X%}, 8), ) + 2k(u
21 R3 3123

With this all members in the moment equation (VI,129) are known

(V1,153%)

(VI,154)

(u® there means, of course, ug). In the next paragraphs some ways to

solve this equation will be discussed.

(6.32) Explicit Calculation of the first three coefficients of the

Lie Series Solution of Eq.(VI,131)

As far as the numerical evaluation of Eq.(VI,131) is concerned three

possible ways offer themselves.

i
1. Repeated application of the D-operator (Z = é %7 Dlz)
= !

yields very complex results for i > 3, such that we have to

restrict ourselves to few terms; thus, we have to choose a
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. small step length at = t2 - t1 from which, on the other hand,
an increase of the calculation time arises. Furthermore, the
truncation error might be considerable.

2. Derivation of recurrence formulas for Diz; in this case, one
may perhaps choose a relatively large step length.

3., The third approach starts from a representation of the solu-

tion in terms of main part and a "perturbation integral” to

be evaluated by iteration:
t -
tD o
Z=e1Z+§JMDDa dt
a! 2%z |-
) to a -

In the present report, the method of recurrence formulas is treated
in extenso.

In this section the repeated application of the D-operator will be
treated.

The equations to be studied have the following form:

- -2- 2. <
. (b+B,c"b-c“B.b) -,
% o= - &?cc(B1 + B2) - 4B 2 > 1. %1(-1 + 3202 - cQBT) -
N N, -
02 ==
- a ccb(B1 + B2) + El-% + —2-%- (V1,155a)
1 2

- 2 - - -2 27
c” + Bye )+ chcb(B1 + B2) - bay[; + B,c” - Bye J +

+ ;'35'(31 +By) G +=-0C=c (VI,155b)

V- Bjoc + &2°6('Bsb2 * B2(B1 +8,)) + L1 4 b233(02 - 3%+

=2, -2 2 cer = sy w2 2 b
+ b (Bzc -c B1)) + aybcc(B1 + By) + By(Bye” - B¢ - 1); +
N N - N. -
2.1 _ _2c¢
+ I, T, b T, D b (Vi,155¢c)
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where a, y, B are the Eulerian angles, Ni the external torques, and

4

.

the Bi abbreviations for:

=]

T
12
B, = =2+ B, T Ty =Ty - Ty

= , . s .
2 T 1, 3 3 1) 1

2

The Ii are the main moments of inertia and Ti =[Xi dm

With the Euleri

an matrix A

ca - cab, -cab - ca, ab

A = ca + cab, cab - ca, -ab (VI,156)
cb , cb, b
where
a = sin « b = sin 8 ¢ = sin vy
- _ - (V1,157)
a = cos a b = cos B c = cos ¥
The torques Ni read:
N, = u2(5a a,; - 8,,8,;)T7,, + 2u(T,0.a, . - T.a,.8,)
1 32%33 22%23/% 23 392803 2%0220%3
2 . .
N, = u (3331533 - a21a23)T31 + 2u(T1a2195 - T3a2391) (v1,158)
N, = u2(3a a,, - a,,8,,)T,, + 2u(-T,a,.6, + T,a,.68,)
3 31732 217227712 1721 272271

For our purpose

we rewrite Eq.(VI,155)

1,00 B=1, = j;: fr,00 ¥ =13 = Ei:fa’q (VI,159)

f14 = 814BY
£15 =-}I%% (VI,160a)
p M
16 = I, b
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With the

tions
€11 =

840 =

beec(B, + B,) g8,z = cc(B, + B,)
! 2 13 ! 2 (VI,160b)
b 2 -2 -2
F(B1c -1 - B,e ) 84y = 3(1 + Byc” - B,e
.2 ..
g21a f24 = 824ﬂ7
8,,4B fy5 = %4-5 (VI,161a)
1
LB/ !2.
€,20Y f,p = = c
23 26 I,
- 2 -2 -
bb(Bzc - B¢ ) 325 - b(Bzc2 - B1c2 -1)
(VI,161b)
€11 €24 = 813
&2 p . é.
&3 34 = €34PY
- .2
g32aB f35 = g3sp (VIi,162a)
* e N
83347 f36 = '1’;‘
=2 2
cc [(B1 + Bz)b - BBb ]
1 [ 2, -2 2 2,2 -2
Y L1 + b7 (B,c” - Bic”) + b B3(c -c 1 (VI,162b)
b, =2 2 -
819> 834 = %(B2c - Byc” - 1), 835 = Bscc

Eqs.(VI,160b), (VI,161b) and (VI,162b) we obtain the rela-

_ 2 _ (VI,163)

According to Chapt.I the formal solution of Eq.(VI,159) reads
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0 N
Dao’ B(t) = ZQ! BO

a(t) = zii %%

00 tQ 0
7(t) = Z o 2% (VI,164)
The operator D reads in our case
. 0 s 9 . 0 ) ] 9
D=d5z+B TR T f, 33+ 5 a5t f3 53 (V1,165)
Obviously one has
(o] (o] (o]
Da, = a(t=t), DB =p(t=t ), Doy, = y(t=t))
Da = f D1B = f D17 = f (VI,166a)
o 1,0 o 2,0 0 3.0 '
2 1 2 1 2 1
D'a, = D f1,o D°B, = D fz,o D'y, =D fB’O
With Eq.(VI,159) we obtain
1 6_ 1 £ 1 EE: 1
Df, = E Dfy of D =:LT Dfy o Difs= : D £y (VI,166b)
Df11,o = [hs(ﬂbcc - h17b)a 2g11f1] &
1+h
Df = 1(2n,3Bcs + B —2)&B + g, ,h
12,0 = oV "37 b 12192
Df - -h h, &}’ h
13,0 = “1P3%7 T 89303
(VI,167a)
Df =

Df16,o" 2
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oo = 2 o = = | . .
\F4B(b2 - b)) + 2h3ybbcc‘]a + g21f1} &

o
&)
N
—_
©
[]
= f“J"\\

5(h 7B - BbcC)dB + gy5h 5

22,0
Df (2byg +'E Bg )&y + g,5h

23,0 = \P¥8y3 T g FEo3 23813
Df h b, B3> + g, 4h

24,0 = MP3PT * &q5has

1 -
by o = T (cDN1 - cyN1)
1

Df26,o = - T; (eDN, + ciN,)

o
Hy
0

. 2 g 7. ).
31,0 {[;17(h3b - BBb ) + 2bb00B(h3 + B3)J a + 2g31f1}a

1| ae
. 2 o] o
+ 7 2(835q - Bgb °°)J B + &350y,
D5 o = h§(h175 - pbcc)ay + 833

1 .
Dfzy o =% (By4 = 819)BY + 835,53

f = X 2‘ b
35,0 {h173 ¥ °°f2} PBs
Df - oy
36,0 13 3
TEREIY N, .
— | e ] —— _0"’\ < - 0. = _
Df37,0 =% [b T, (Be - ybbe) + - (Bec + ybbe)
-.c P y
- b(f--DN1 + 7 DN2)J
1 2
where
-2 2
frme e hy = By + B,
-2 2 -2
h, = B,3" - B,c h, = Bye’ - B3

(VI,167b)

(VI,167c)



h,, = £.8 + £ & hy, = £,7 + fsa

13
hyy = £,7 + £3P

For DN, (i = 142,3) we obtain

DN1 ,0

+u {+ 3u(T, - TB)(+a32Da35 + 333Da32) + 2(+T3a23Dé2

-

- T2a22D93) +[:+T3(+292 + ua22) - uT2a22J Days -

- [+T2(+2é3 + ua23) - uT5a25] Da22}

DN +u {+3u(T3 - T1)(+353Da51 + a31D333) + 2(+'1‘1a21D95 -

- T5a23Dé1) + {+T1(+2é3 + anB) - uT3a23J Da,, - (vi,1674d)

- [;T3(+291 + uaz1) - uT,a,, ]D323}

+u{ +3u(T1 - T2)(+a511)a32 + 332D351) + 2(+’1‘2a22Dé1 -

DN
3,0

- T1a21D92) + [}T2(+291 + ua21) - uT1a21} Da,, -

_‘}'1‘1(+292 + ua,,) - ulT,a,, ]Dam}

D8, = (+£,bc + f,¢) + &(bey + bep) - Bey = +8, +
+ (+f bc + foc) + &bep

Dezp= (+f1b5 - f2c) + &(bep - bey) - Bcy = _;91 + (VI,167¢)
+ (+ f1b5 - f,¢) + &bap

D85 = (+£,0 + f3)-abB

Da2ho= D(ad) + D(abc) = +(+&ac - yac) + (-dabc - abep + aboy) =

= +aa,, + ya

11 - abchP

22

D322¢f -D(ac) + D(abc) = -(+&ac + acy) + (-aabc - Ebéé - abc}) =

= +da,, - Ya,, - abcp



Da = -D(ab) = -(-ab& + abp) = +&a,, - abp

23,0 13
Da = +D(bc) = +(+fbc + $b3) = +ja,, + Bep

31,0 52 (VI,167f)
Dagy o = +D(be) = +(+Bbc - ybc) = -ia31 + bep
Dags o = +D(b) = -bp

Further applications of the operator D yield very complex expressions.

(6.33) The solution of the Eq.(VI,155) by means of Lie series making

use of recurrence formulas

We now replace the system (VI,155) of three second-order differential

equations by the following system of six first-order differential

equations:
Z. =2,
J J+3
.o ° 8 -
2.2, ,=f. = n.d.. + n.d,_. (vi,168)
J J+3 J =7 ! J? < 1J1
(3 = 1,2,3)

where use has been made of the following designations and abbreviations:

a = Z1 ’ B = Z2, Y = Z}
. . (V1,169)
a = Z4, B = Z5’ ? = Z6
as well as
° e .B 2 e 02
n, = ay, n, = af, n3 = 3%, n4 = A ,
.2 - _ (v1i,170)
nS = B ) n6 = N1 ] n,? = N2, n8 = N3

The dij are given by:

d = -cc (B, + 32)
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The formal

and

dp, = - % (1 + 3232 - c231)
dy5 = - 1 (8,3% - o°B, - 1)
dyy = - cch (B, + B,)
46 %5 b
Gyt
dy, = -b [1 + 3152 - 52c2]
d, ccb (B1 + B,) = -d,,
dyz = -4y,

doy bb (-3152 + 3202)

c

Y26 = T,
dpy = - %;

31 = - 44y

a5, =3 (1 + b2B3 (c? - 3%))

dss % (3262 - B102 - 1)

d cc(-B b2 4 52(3 + B,))

34 3 12
d35 B5°6
%36 %;’ 57 = - %§?’ 58 = %23
solution of the system is given by
z, =" Pz_ =§i; %i %% (0 = 1,2,3)
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Now we attempt to derive recurrence formulas

(VI,174b)

connecting higher order

powers of the D-operator with lower ones; for this purpose we write

DQ+226 in the following form:
Q+2 Q Q Q jfi &
D*""z, =D (D zi) = D¥f. =D (‘ nidjl + § nidal)
i=1 1=6
‘ J Q-J J e-J
¢ 1 1 1 1
= ¢ D n.D d.. +D D d..Y =
R R N
Q (Q ) iL. (31) ( j2 1’j2 )" Q'j1
- > . D D D d,, +
= 1 ||[5= e M Aa'- gt
J ¢=J
1 1
+D ND djik (VI,175¢)
where j, € ¢, §, € ¢
Q-J,
D d..:
—
Q_j1 Q'«j1 -
?----ﬁll = -(31 + 32) D ce (VI,176)
0= 3 Y4 3, 3. 3g-3
D 'es - D 4c3 - (34) p2ecp 4 7 (VI,177)
Jg 5
; je-1 I57 Ge1 G 3e-1-3
- - 6 T Y6
D’ c-+D° (3zg) =5 ( ?6 )p © 3p ° z¢ (VI,178a)
J6
Jpde | 3mde-t
D40 E 04T (o) -
947957 5 et dg Gumde-1-d
- 4 35 )p Cep 4 O 76 zg (VI,178b)
J6 6
h . ,é’_ . - . _ 5 - - 3 . - s . é
where Jg = g -1y J, - ds -1 - Jg T e ds - 3y - dg =0 (VI,179)
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J )
I3 3
j is=1 g Jz-1
31 3 b 37 o -1 -
D’ ¢ =-0D (;5 zg) = -D (bb™'b
I3 P S PSS D PELES PR
= - 2 (7 )b (b )D (v
3 g
4
: J J
p 45 ") Ejt( 4y p % gp 4 O B!
Jg 5
. Jo=1-J . .
Jz=1-3, _ Jz=1-J
p > 4(b125)_ (5j 4yp by 1y
'J6 6
0=J,-3 1 1,-1
D 1 3 = D 1 B = —D 1 (bzs) =
1,-1
1,-1 1, 1, ,-1=1
- - (1 P! %
) 2
1,-1
1 1,-1 1,-1 1 1
Do =D ' (Bz.) = ' yp 2%
5 1,
2

;U
DJ3 %w see (VI,181)
DQ'31'33 =2 _ Dl1(65) _ E;i:(11)D12 = D
) T, 2 ¢

- 152

-2
(®g-)  (v1,180)

(vi,181)

(vi,182)

(vi,182a)

(vi,183a)

(V1,183Db)

(VI,184)

(v1i,185)

(vi,186)




12_.
D" c: see (VI,178)

-3 C s
=3y go2. < e=dy 5 § Q-dq=d
D ’(——f,)-i(j')D}-ED T (V1,187)
5 %
I3

D : see (VI,181)

o'lot

A 1

e=Jy=dz 1 11 1 1,-1

p . 1(cc) = % (1;) p'ep! %o (vi,188)
2

L
D c¢: see (VI,178)

1
13 By T~ *+'ByD T +D 3 (vi,189)

(v1,190)

see (VI,182)

Q=Ja=Jz _
17352 see (vI,186)

. Q-J . . ..
Q-J 2 Qe-J J Q=J,=J
p ! S D Yo 5~% p 132 (VI,191)
I3

D

I3

D~ 3: see (vi,182)

Q=J4-J
D '3 62 gee (v1,188)

Q-J1

D : see (VI,182)

o'|=

e=dy _ . e=Jq
D d, ,: -(B1 + BZ)D (bcc) =D a (v1i,192)

Q"J1 e-J Q-J1

D (bec) = ( BDQ (ce) (VI,193)



I3
D’ b: see (VI,183)

Q'J1 -
D cc: see (VI,177)
Q‘j1
2 b
@=d4 1 Q71 ¢
D dyg = —1—1- D Y (v1i,194)
. Qe-J . . .
e-J Q=] J Q-J
D 1%= (. MYp2ecp 11 (VI,195)
J b
J5 3
I3
D c: see (VI,178)
e=dy 4
D ¢ see (v1i,182)
Q-J1
P_hT
@=Jy (ECRCE
D d17 —-i—z-D Y (VI’196)
p R PR PO
% Z cD > Y (VI,197)
I3
33 -
D ° c: see (VI,178)
Q_J1-J3 1
D 5: see (VI,182)
Q-J1
D
Q-J e-J =, _ e-J
p dyy = =D Ty - B,D Tpa? + B,D 1pe2 (VI,198)
Q-j1
D b: see (VI,183)
e-dy o Q J Q-J, -Jdz _
p ' be? - ‘ o2 ep 1332 (V1,199)

3 I3
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I3
D’ b: see (VI,183)

Q=J.-Jdz _
p ' 72 3% see (VI,186)
4 ¢=J . . ..
e=J 1 oe=dy  Jz  @-dy-d
> ! (ve?) - > ! yple TP CR (v1,200)
I3 I3
I3
D’ b: see (VI,183)
Q=Jq-J
p 12 % see (vi,188)
Q’J»]
D led
Q_J1 Q"j1 -
D dyp = -D (bd,,) (VI,201)
€=y e-dy e,
P do3° D doz = -D dyy (VI,202)
Q=dy Q-j1 “Jq -2 Qmdy 2
DG4t ? dpg = ~B4D (bbe™) + B,D (bbe®) (VI,203)
3 Q-J . ..
¢=d . e-3y s _. e=dymisz
Jz 3
1y 2
D ¢°: see (VI,186)
3 éf: ERF PR P
v7 8 - F_() vt e s (VI,205)
T4
D ™ b: see (VI,183)
ig=d, .
p > 4 b: see (VI,183)
Q-j1 Q-j1 1 Q'j1 -
? _____ fgé‘ D dog = ET'D c see (VI,178) (V1,206)
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D d,,: .
SO Y G et P
-1 0D c: see (VI,178) (VI,207)
2
Q=J
]
P
D dsy = -D dyg (VI,208)
Q-Jy
DL
R=dy 4 e-J 5 Q-J _
e-Jy
D 3¢ see (v1i,180)
3 Q-J . o
Q_J1 2 1 - 1 J5 Q__J1_J 2
D (be”) = ZE:::( 5. 07 bD 3 (VI,210)
33 3
I3
D’ b: see (VI,183)
Q-J4=J
p 5 02: see (VI,188)
Q—J1
d,,:
O
e=dq g2 e=dy g2 e=Jy Qe-Jd,
BoP 7 - BD - -D p=D = dgy (VI,211)
e=Jy §3?
D ——: see (VI,185)
Q=J, £.2
p ! 2 see (VI,187)
e~y 1
p %: see (VI,181)
@ - Q=Jy Q-
-2 9 )
d,,: d = -
1-3 ______ 34 D 34 BBD (ced®) + B,D (c3B°) +
e=Jy  __»
+ Bph (ceb®) (V1,212)
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. o=J . . .
Q-J - Q=Jdy J _ Q=3,=3
p ' (eeb?) =Y ( 5 o2 (eg) p ! 3 p? (VI,213)
J 3
3

J -

p > (cc): see (VI,178)
1

1 1 1 1,-1

D't -3 ((MHofenl P (VI,214)
12 2

1
D" b: see (VI,183)

. Q-J . . ..
e-dy , _ > 1 e=jy  Jz _ e=iy=dz
D (c3b’): = Ea ( 3, ) D2 e3D | O (VI,215)
3
. Q=J,=J .. . L
Q=Jdq=J Q=d,=dz 3 Q-J,=J
p PSS ( 31 o 4w Ty (VI,216)
34 4
I4
D" b: see (VI,183)
33 _
D~ cc: see (VI,17T)
PRI
SRR > R L e=dy
D dzc = B3D (cc) see (VI,177) (VI,217)
Q‘J1
D dsg:
--------- Q-J1
D d56 =0 (vi,218)
Q-~j1
T A G
RTINS B Y (V1,219)
31 I b ’
. Q=J . . . s
Q=d;y .1 Q-J J e=d,=dz %
p TR ST o 5¢p 15D (VI,220)
J b
Jz 3
b

D ec: see (VIa78)
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Q-Jy=Jz %
D 13 %: see (VI,181)
Q=J; 1 %71 3B
? _____ iégz dfz D P (vi,221)
. Q-J . .
e=d, =t e-J e-J,=dz _ Jz 1
p 3% = ¢! 155072 % (VI,222)
3 I3
3
J' -
D> %: see (VI,181)
14
D  c: see (VI,178)

J
The recurrence formulas for D 1Ni (i=1,2,3) can be derived in analogy

to the expressions presented above.

D N, =u T23D (3a32a33 - a22a23) - 2uT,D (a2295) +

i
+ 2uT3D (a239) (VI,223)
. i . . o
D (a32353) = 2 (33) D a32D 253 (VI,224)
3
3y 35 . 3ag 3, . 35m3,
D 85, = D “(cb) = (.”) D" ecD b (v1,225)
7, g
iy - J5-3,
D " c: see (VI,178); D b: see (VI,183)
Jqi-3 Jq -3
D 3a33 =D 3B see (vI,183) (v1,226)
3 o R D e 1Y
D (aya,3) = (;0 D7ay, D 855 (VI,227)
I3 3
J Jz _ — J J .
D 3a22 - D ?(3a + cab) = D ’(3a) + D >(c&b) (VI,228)
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J

Jz _ 3 j _ Jz-d
D5(ca)_-f(3)1) cp> 4, (VI,229)
34 4
iy -
D7 c: see (VI,178),
3.-3 1 1, -1
p°> 4a-pla-n' (§z4)=
1,-1
1,-1 1 1,-1-1
S () ) D2 ap ! 224 (V1,230)
1 2
2
1,-1
1 1,-1 1,-1 1, 1,=1-1
D' a--p" (az,) = = E ( ! )D 2ap | 2, (vi,231)
4 et 4
2
. J . . ..
J 3 3] J Iz=3
D 2(86e) = (°) D4 (8B) p0 "4 (VI,232)
J
34 4
Jz=3J
D 574 c: see (VI,178)
J4 - J 34 35_34’J5_
D "(ab) = (j ) D7 aD b (v1,233)
Jg 5
35 _
D ° a: see (VI,231) and (VI,232)
34—35 -
D b: see (VI,183) (v1,234)
Jo=3J Jo=J __5_3-3 Jy _ 3n=d
D2 Ba, =022z -- ("2 Py dan?Th (vi,239)
23 Iy
4
J Jo=Jdz=J
D 4 3: see (vi,234), D 2374 b: see (VI,183) (VI,236)
j1-j3 .
8p283) = ( D 65 (v1,237)
I3
D “a,,: see (vI,227) (v1,238)
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Jy=3
'95 - 3(z4f1+26) =
J1-J
=Jz J Jy=Jz-J Jq=3
= Py TP A ! e (v1,239)
J J 4 6
4 4
39=35=3, _
D 2 T4 B see (vI,183) 3y = @ Jy=ds £ (VI,240)
J .
1 . ZJ_. Jq Jz dy-J3
(a239) = 3 (33) D 8,3 D 9, (VI,241)
p)
J
D> ay5: see (VI,175) (VI,242)
Ja=dz & Ja=3
D 392=D1 3(245‘0-—250) =
31793 5. - Jqi-3 Ja-
=§ ’. 5){1 3(zcb)+1)1 3(20}(VI245
I
dg=3 Ji=dz J Jy=dz-d
p 5zcb)=i(1 3y 2(b)p | "3 7P 2, (VI,244)
Js . 5 3. J6 - Js57g
D “(cb) = (36) cD b (V1,245)
J
Je _ Je=J
D 6 c: see (VI,178); D 576 b: see (VI,183) (VI,246)
; J1-33 . .
J 1 Jqy=d 3y Jo=3z=3
D13(zc)=z (’3)1: zg 0 0 o (VI,247)
J
D4 c: see (VI,178) ) (VI,248)
J'4 = Q
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2
31933 - a21323) uT,, +

b4

+ 2u(T1a21é3 - Tsazjq{S
; 3y 3y 3 3.3
1 1 3 1 Y3
D (agy855) = Ei:(33) D7ag D %33
J
3

ix . . .

3 iz =3

(eb) = 5 (33) ptecp’ 4y
Iy 4

D a = D

J Jz=J
D4 c: see (Vvi,178); D 5 "4 b: see (VI,183)

D agsi see (VI,226)
D (a22325) = a (33) D~ a,,D a5z
3
D a,z: see (VI,235)
I3
D7 a,,: see (VI,228)
J J J Ja=3, .
3(a2193) - }Zi_( 3) p 4 p> 4 8
4
Jz=d, .
D2 44, see (v1,239)

3
J J
p4a, =D 4(ca + cab) =

21
i, . .
J J J
- ngi(d4) p 4 (3a) + D4 (cab)
P

Ig - g, -
D "(ca): see (VI,229); D "(cab): see (VI,230)
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(v1,249)

(v1,250)

(VI,251)

(v1,252)

(v1,253)

(v1,254)

(v1,255)

(V1,256)

(VI,257)

(v1,258)

(v1,259)

(v1,260)



J J J Ja=J

1 . 1 3 193

D (‘2399 = d (33) D 03 D :

3
3
D 3325: see (VI,235)
Jy=dz Jq=3
p' Pe -0 3(z4cb +2:8) =
3,-3 -3
~ 91793 1793,
=D (z4cb) + D (zsc)
. J.=J . .
3= 1 Ja=dz 343 Jy=dz=d
0" P(z,ep) - S L RS IR
34 4
1
Jo=dz-d 1 1 1, 1,-1
p ' T4er) =D ' (ed) - :Ef:(11) p 2cp ! 2
1 2
2
1, 1,-1,

D “ c: see (VI,178); D b: see (VI,183)
. . J.-3 . . . .
3,3 3,=3 j Jy=dz-d

p ! 32 3) - (Y U3y p4 p !t T3 T4

5 3 Iy 5
4
ig % e

J,-dz=d
p 724G see (vi,178)

35 3

DNy = {(3851 32 21822 0 Ty, +

+ 2u(-T 21 6, + T,a,,6 1)3

D (a51a32) = :%f:(j5) D “agy D azo
3

j1-cj§
: see (VI,251); D a

3.
3
D 31"

a

32°
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: see (VI,225)

(VI,261)

(v1,262)

(VI,263)

(VI,264)

(VI,265)

(V1,266)

(V1,267)

(Vv1I,268)

(V1,269)

(V1,270)

(VI,271)




. Jj . . ..
J 13 J Jy-d
1 1 3 1 v2
D (a21a22) = z;::(j3) D~ a,,D a,,
3

33 31'32
D “a,,: see (VI,259); D a,,: see (VI,227)

. i . .
i, . N PR Ji=ix |
D '(a,,8) = % (33) D> a,, D 08,
3

D~ a,,: see (VI,259); D 6,: see (VI,243)
j LN PR 3473
‘ > g
D (8558)) =2 (5 ) D7 2y, D ©
Iz 3
J} 1-j3 .
D~ a,,: see (vi,228); D 6,: see (v1,263)
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(VI,273)

(V1,274)

(v1,275)

(V1,276)

(VI,277)



FLOW DI AGRAM

2. =2.(t=t ), 2, =2 (t=t) i=1,2,3;
i i o k k o) ’
k=4v596
7 1
o) o)
Drzss D2y Dizy
N _ ~ _
a ,ao,bo,b yC ,co
Dodji, DN 0=1,2,3
. 2 1
h tlmes. D zi, D zk
h: number D1d.., D1N
J1i g
of steps
v
3
D Z. D z)
2 2
D dji’ D Nd
4 3
D zi, D zk
A ke
hd
y=2 y=2
D dj' D No
Dyzi, D7-1zk y=number of
. maximal terms
il D'z to be cal-
culated
4 Zi(t=th), Zk<t=th)
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(6.34) Application of the iteration method to the equations (VI,155)

Essentially we have to solve the following system

Z = Z? i a f

1 4 2
i, = f, és = 2 (vi,278)
3 = 2% % = I3

For a circular orbit the explicit form of fi (i=1,2,3) is given in

Eq.(VI,155). The operator D appearing in Eq.(III,74) reads in that

:%; . 9
D = 2 5, (vi,279)
1= 1

We proceed now to the construction of 2(t) (see Eq.(III,85). This

cage

problem is from the numerical point of view a very important one, be-
cause the computer time and the maximum accuracy depend very strongly
on the choice of Z(t). We are not experts on finding such effective
functions, let alone on finding the most effective one. Nevertheless
we would like to propose such a function Z(t). We choose

2(t) i % D%z (t=t_).

Q=0

Here D%z can be calculated either by recurrence formulas (see Sszct.
(6.33)) or by applying the operator D explicitly (see Sect.(6.32)).
The latter procedure yields very complex expressions for 0> 2.

According to Eq.(III,75) the operator ADZ reads in our case

6 .
APz =§ (2,(%) = ,2, (%)) 52—1 (VI,280)

In the interest of clarity we describe the first iteration in more
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detail. For this iteration A = o. Using the denotation

o
5z, = % D
1

A=0D2 reads explicitly

N—
(=%
—
+
~~
Ne

A . A
5 - oz2)a2 + (z3 - 0z3)63 + (z4 - 0z4)a4 +

.
) A
Z

+ (is - oz5)65 + (z6 ol 6)66 = (z, = 6%1)61 + (f, - 322)62 +
+ (24 - 025)63 + (f2 - 6?4)64 + (z6 - 635)65 + (f5 - JE6)a6
(vi,281)

According to Chapter I we have

o 1 t2 2 X %
z(t) = D z(t=to) + tD z(t=to) +5- D z(t=to) +) o7 D z(t=to) =

Q=3
QL0
- 2(%) +) %T-DQz(t=to), i.e.,
Q=

we choose for z(t)

2
Z2(t) = Doz(t=to) + tD1z(t=to) + %— D2z(t=to) (vi,282)

With the Eqs.(VI,278) and (VI,279) we obtain for 7 = d%

>
o+
no
Hh

oz1(t) = z1(t=to) + tz2(t=to)

+
2

+
ot
N
[
RN
H

2|
—

#

o/z\z(t) 2,(t=t ) + t£, (t=t )

N

A

oz5(t) = z3(t=to)

<+
+
o

2]
N

tZ4(t=to)

N

(v1,283)

+
+
mld

-

N .

6?4(t) = 2, (t=t,)

A

ozs(t) = z5(t=to) + tz6(t=to)

tfz(t=to)

=]
Hy
N

+ +
ct Nfet
N =
o [
- AN

L]

o2 (%)

z6(t=to) + th(t=to)

no
AN
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With the Eqs.(VI,281), (VI,282) and (VI,283) oD, Teads

oDo = (2,(¥) - z,(t=t_) - tf (=t ))o, +

+(£,(8) = £ (b=t ) tD1f1(t=to))62 +

+ (24(t) - z4(t=to) - tfz(t=to))a5 +

] (VI,284)
+ (£,(%) - f,(t=t ) - tD fz(t=to))a4 +
+ (z4(%) - z6(t=to) - tfa(t=to))65 +

+ (£5(8) - £5(t=t) tD1f3(t=to))a6

Putting a ¢ 2 Eq.(III,85) reads

t
1
185 = hi(ozi(t),t) + J [ODQD zi] R dt +
t z.(T),T
) o’i

t -
+ i (t=-1) [;D2D2zi J

(o)

A dt, where (VI,285)
ozi(T)’T

in our case h(o%i(t),t) is given by

h(oZ1(t),t) = o 1(1;)
h(021(1;)’1;) = f1(0/2\’ 622’ sece 026)

B(,25() %) = [25(t)

h(,2,(%),t) = AT A (V1,286)

|
Hy
—

2
h(,25(8),8) = (25()
h(oz6(t),t) = f3(oz1, oZpr cee 026)

1
and for D.D z. ] i i
[o oDz A.(T)’T we obtain the relations
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1 -
[pnzD 1] 2y [éDzzz J 2 (e)or
0%i\T/ T 02i\T/7

[f1(z(t),t) - f1(z(t=to),to) - tDf,

621(1),1

= f1(021(T): 022(7)’ tee ogg(T)) "

f1(z1(t=to), ceny z6(t=to),to) - T[Df1J ~

ozi(r),T
D D1 D, f
072 Zy > ( ) o727 1| A ( )
02i\T/oT o1 ¥
------------------------------- (v1,287)
D D1z = D,f
02 6 (7) T lo7273 ()
OlT,T OIT,T
2 .
and for DD z. J we obtain
0”2 117 (t),7
o'l ’
[DDzz} [Df}
02 1 A T lo271 A
ozi(x),r 021(1),1 (v1,288)

|
o
(=]
N
o
()
N
o
N>
[N
~~
e
g
P
i
[e)
=)
N
[w)
-
(o]
W
[E—
pd
~~
L)
p
p

With Eqs.(VI,285), (VI,286), (VI,287) and (VI,288) 18; Teads
t

18 = oé1(t) + £ (f1(021(1)’ 022(1)’ T OQE(T)’T) -

- (2, (=t ) ..., 2g(t=t_),t ) -

- T[Df1 ]/z\.(‘r)"r)d"r +

o 1

t. -
+ ] (t-1) [OD £ J dt
l’ 21 ozi(r),r

o

168



or

t
1= B 0+ [ (R0 -2 (et -

o)

t
) T[Df1l/z\.(1) Je e s ’] 0?3 (7)7

o 1 o

t
Z(t),t) + [; } dt +
i’ 42 (t),7
t-1 f T
' io( ) LDZD ’] ) e

t
A0+ ] 80 - rytaem)) -

(o]

-

[+]
N
[

t

- 1|Df dt + (t-r)[sf ] dt
[ 2Jo/z\i(1:),1 l 2 (1)

o
t

f2(o%(t),t) + j [-D2f2 J Se) e dv +

t
o 0

t
+ [ (t-1) [0D2Df2 ] A dv
t

o oz(r),r

t
185 = o5(t) + i (250205 o7 = £(a(tat,)) -

(o)

~

- r[éf J (T)’T)dr + i (%- T)[DfB} %.(T)’T

(o) o 1

-

18¢ = 2(t),t) + z [ J dt +

I
o (t) 7

t -

o]

With Eq.(III,73) we have
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t
A = = (.
1zi(t) zi(t to) + £ glt) dt

° (i=1,2,o-¢,6)

The second iteration (A = 1) yields for AaoBi_1r €8¢

t
A 5 A 3 )
By = {7y + ) (f1(1Z(T),T) f1(z(t=to)
)
. t o
- T[Df1J A (1) Ydt + i (t—r){1D2f1j A () dr
124\ 7 o 194\T/ 07
and for A = o+1 (i.e., ¢ iterations)
Agi reads for i =1
t
A A
o+181 = %1 +‘[ (f1(QZ(T)’T) - £ (2(t=t,) -
)
- % _
- T[?f1l e dt + i (t—x)[§D2f1j A (5) dt
-Q i T)sT o 0 i T)sT

In our case (see Sect.(6.32)) the integrations appearing in the above

formulas can be carried out analytically.
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N

(6.4) The Numerical Evaluation

>
(6.41) Now, the problem of solving (VI,131) with N from (VI,154) was

given. For the purpose of information, Lie series

e 5 %

-_— o L. —— 3
a(to+t) = 0y + teDa + Z=D7a_ + - Da + ...
, 5 (vi,289)
. .3
a(to+t) = Do+ teD ay + g7 D+ ..

etc., broken off after a few terms, were considered, see (6.32).
Unfortunately, by lack of time, we could not start an iteration process
corresponding to (6.34) with (VI,289). The computation of Daao was
already rather difficult (see (VI,166 b)); hence the direct compu-
tation of the next terms Dkao would not be recommendable, but it might
be suitable to use recurrence formulas (see (6.33)) together, with

k

D o k = 0,1,2,3, Using such an approximation even one iteration

step may be sufficient to provide a very satisfactory result.

(6.42) The fact that, when using (VI,131) with (VI,154) to describe
the satellite's attitude motion, the singularities b = sin B =20
coincided with the two points where the satellite should be at rest
give rise to a number of serious objections: Simply speaking, the
better the stabilization, the worse the corresponding result. Never-
theless, we solved these equations, since (a) we would not renounce
this most intuitive choice of Euler angles (g is the deviation of a
satellite symmetrical to ;3 from the local vertical), (b) we had no
time for another procedure, as, e. g., the introduction of the Cayley
variables, and (c) we considered it to be an improbable event that

the satellite should approach the critical domains around 8 =0, =

closely enough, just in our examples. These facts and the very small
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step length caused by them (5% degree of the angle in the orbit,
i. e.,, more than 7000 analytical continuations per orbital revolu-
tion) made the results appear somewhat doubtful; but Lie series

long before this proved to be very suitable in such critical cases.

(6.43) After some other computations described below, we started

calculating the motion of a satellite with J11 = J22 = 96030 kg-mz,

J33 = 60 kgomz, height 1667 km about the earth's surface. The

- 3 . o 0 o ® O .
initial values are a, = 0, Bo = 2,57, Yo = 457, a =Y, = 5 /mln,

.

B, = 0. B(r) and B(x) 8 with u: = (t-t )-/%,/ are plotted in

fl

Fig. 3 from chapter VI (instead of é is given 10é). The figure shows
that p is bounded by O<:ﬁ<:3,50. Ye interpret this as a stabilization
effect. The tehavior in time of B suggests a resonance effect with
the motion in the ortit (a period of two orbital revolutions), but

as we presumed an exact circular orbit no coupling of the two motions
is vossible. But it is just this periodic behavior which makes us
believe that the results are astonishingly good, under the circum-
strances given. It is by no means understandable that a wrong result
should produce such a clear period and reproduce the initial value

of gt g(u=4n) = p(0) = 2,5°.

(6.44) At first, the "horizontal'" case was treated in the test cal-

culations: @, =Y, = 0 = &o = éo =Y, B = 90°= The first coefficients

o] [¢)

of the Lie series solution vanish, and the assumption that this result
should also hold for all following terms is straightforward. Conse-
quently, all quantities would have to remain unchanged. Accordingly,
this case was used to study the error propagation as a function of

the step size (2 to 6 revolutions). The result was that the step size

should not exceed 0,5o and possibly be considerably smaller, if the
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solution approaches a singularity. For the rest of calculations

we usually chose a step size of 0,050.

(6.45) As a second example - strictly speaking, for the purpose of

information - we considered a satellite with J11 = J22 = 10363 kg'mz,
2 L L] 0 ® o 03
Ig5 = 60 kgem” and « =y =0 = B = Yo » By = 455 & = 15 /min.

The axis of symmetry pendulated between B = 50 and B = 1750, and &

and Y showed the expected increasing behavior close to the singu~-
PRNE] I 1 -2 o -4 3 .

larities: & = (cuS + cus)/b, ¥ = - b& +uZ; if we assume that also

close to the singularities the satellite's behavior is "physically

meaningful", i. e., that Ei remains restricted to reasonable values,

& increases strongly because of b = sin g —0 and Y tends to -&.

On the basis of these results the case discussed in (6.13) was then

calculated *

D. Floriani is indebted to Dr. Knapp, Docent in the Institute for
Computation Techniques, University of Innsbruck, for a number of

valuable discussions,

* Tables of numerical results are available upon request from Chief
Applied Mathematics (RRA), Research Division, NASA Headquarters.
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(6.5) Appendix; Conclusion

First we will deal with some more papers concerning the attitude

motion of satellites.

Bounds on the Librations of a Symmetrical Satellite (Ref. 128): In this
paper the case of a rigid, symmetrical satellite moving in a circular

orbit was taken as basis. This corresponds to our specialization in

>
(6.312) with u% = n2, J53 =Cy Jyy = A =1J,,. Two systems are used: the

> > >

. > =
orbit system 41,2,3% } (equal to {?5,-14,+1£} from (VI,123)) and the
- - = > > >
system of main axis {1b,2b,3b} (our system II {11,12,i3}.from VI, Fig. 2).
To avoid singularities in points of interest two sets of variables are

used for transformation: (a) ¢,0,%: cos ¢ = :aéz, cos € = ta{1 in

: in (VI,126),

(VI,126), ¥ = v; (b) 6,,0,,¥: cos 6, = -a!

109 COS e

—_ 1
2 T 839
Y = v, The Hamiltonian describing the rotation is splitted up in one
term Rz, containing the ansular velocities, and another term U (the

"dynamical potential") free of them. In the followin:s by help of U these

values (¢,0) or (01,92), resp., are sought, for which the axis of

J
. . r>rr spin sxeed . Cc
symmetry is at rest in {1,2,3 . Such an (orbit ang. vol. against O ) -

11

- diagramm is subdivided into seven domains with different nature of

stability. These seven cases are graphically discussed.

Tumbling Motions of an Artificial Satellite (Ref. 129): In this work

the motion of a satellite with moving internal parts effected by gravity
gradient torgues is treated. These torgues cause relative motions of the
individual parts and produce internal friction destroying rotational
energy. Thus the satellite's tumbling motion by and by decreases until
he is cartured into librational motion. This type of motion may occur

after separation from the booster rocket or after collision with a
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+meteorite. As a simple model a satellite is considered with two

internal, symmetrical inertial wheels, one arranged to rotate about

the body's main axis of inertia, the other about a transverse principal
axis. To investigate the catellite's motion a kind of perturbational

metrod is used, since the direct digital solution of the egquations of

motion seems to be very costly in time and in round - off errors. Thus

one obtains a set of non-linear differential equations for the averaged
motion the integration of which is essential easier. Then results are
discussed; it is, e. g., found that, for tumbling angular rates greater than
three times the mean orbit ansular rate, the time to capture increases

as the cubz of the initial rate.

Stability of Damped Mechanical Systems (Ref. 130): The question for the
stability behaviour of damped, mechanical systems is of :ireat importance,
for the investigation of the motion of space vehicles. In the work
considered here for some systems their Hamiltonians prove to be useful
"test-functions" for application of Ljapunov's method. In the important
case of gyroscopic systems there is a principal difference between the
Hamiltonian belonging to and the total energy. After a theorem demonstrable
by Ljapunov's method three corollaries are stated. The second of them,

€. 2., gives the important result that the behavior in stability does

not depend upon the magnitude or analytical form of the power on the

premises demanded.

On the Stability of a Body with Connected Moving Parts (Ref. 131):
The stability behaviour of bodies with holonomically constrained moving
parts, i.e., mechanical systems with internal damping, is investigated.

After some preliminary definitions the eguations of motion of such a
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system are consider:d. Assumption is, that the attitude motions do not
effect the trajectory of the center of mass. By help of the direct
nethod of Ljzpunov a general method to determine stability problems

is discussed and first applied to the stability of damped mechanical
systems, then to free nongyroscopic systems. Necessary and sufficient
conditions for (asymptotic) stability are given. Some special cases are
discuss=d as illustration to the theorems derived. Moie in detail the
case of a spinning asymmetrical body damped by a control moment gyro

is treated. The general theory is also applicable to non-linear systems,

and it gives bounds on the configuration spsace convergence regions.

Analytical Methods for Practical Investigations on Attitude-Controlled
Satellites (Ref. 132): Assuming the orbit of the centre of mass to be
an ellipse in an invariant plane torques acting on the satellite are
discussed as follows: gravitational torques {(but only in the lowest
approximation as used by us in (6.3%12)), aerodynamic torques, magnetic
torques (due to a permanent magnet), hysteresis damping (linear

approach combined with a sort of perturbation method). For the followig
the differences between the sztellite's actual attitude and the attitude
desired are supposed to be small. These doviations are taken as variables
in the equations of motion given in the following. Expansion to these
small quantities simplifiss the equations., Finally, one obtains in the
Eulerian angles three linear differential equations of second order with
periodic coefficients (t is replaced by the satellite's true anomally).
In the next paragraphs, a method for analytical treatment of such
equations is described and then used to investigate (a) the stability

of angular motion, (b) the complete solution for the stationary angular
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motion along the orbit, (c) the response of the satellite to deter-
ministic and (d) to random disturbances. The first German satellite,

625-A-1, is taken as example.

Nonlinear Resonances Affecting Gravity Gradient Stability (Ref. 133):
This work deals with the influence of non-linear resonances on the
attitude librations of an undamped rigid satellite. The only torques con-
sidered are due to gravitational effects. Further assumptions are:
(a) for the gravity potential U(T) = % holds exactly (yields g =1y =0
in (VI,14)), (b) the orbit of the satellite's centre of mass is a planar
ellipse with small eccentricity, e<0O,1 (leads in (VI,25 a) to g(k) -0
for k>>1; this corresponds to our specialization in (6.312) or Ref. 115
(Scient. Rep. 15), respectively). First a simplified equation of motion
for the satellite's attitude is given and the stability behavior as a
function of different mass distributions is discussed. Two main groups
of resonance effects are distinguished, viz. "internal" (for exact cir-
cular orbits) and "external" (0<e<0,1) resonance. In the second section
the Hamilton function used to describe the attitude motions is discussed,
where for the total potential energy V the approache V: = /%(F)dm(?) =

-

=0 m - %82..1(1) (see (6.1%1)) is taken. With some more assumptions
concerning angles and momenta the authors obtain linearized equations
of motion solved in section III by means of an averaging method and
canonical transformations. Then the behavior at internal near-resonance

is treated in section IV and near external resonance in section V.

Stability of the Planar Librational Motion of a Satellite in an Elliptic
Orbit (Ref. 134): The paper numerically investigates the bounds that
must be placed on a disturbance applied to a gravity gradient stabilized
satellite of arbitrary shape in an (exact) elliptic orbit such that it
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will librate and not tumble. In section II the equations of motion are,
derived, by the help of Lagrange's formalism. The approach for the
total potential energy is equal to that in Ref. 13%33. The formula for
the total kinetic energy follows immediately from the assumption of a
planar librational motion and seems us to be as doubtful as this assump-
tion, because it leads to curious consequences, also immediately *),
The investigations on stability are carried out in the phase space
(section III). The limits € nax for the eccentricity e imply periodic
solutions, discussed in section IV, In section V the results are summa-
rized: e. g., the analysis points out that there is a limit to the
value of orbit eccentricity, dependent on the satellite geometry, for
which stable librational motion is possible; it appears that a lafge
value of inertia parameter (i. e. a slender satellite) and a small
value of eccentricity would help to ensure stability; for 0,38<e

gravity gradient stabilization is not possible.

*) Formula (1) yields ' = u’ =0 in (VI,118). This means, bck = -op,

bey = Bgé (denotation from (VI,116); p is equal to ¥ in Ref. 134). Let
>
'3

choice of starting point for the counting of ¥ is irrelevant. It

us consider a satellite, symmetrical to from VI, Fig. 2. There, the

follows then that the planar librational motion é + 0 yields a # o,
i. e., the satellite does not remain in the orbital plane. Thus, the
term "planar libr. motion" has to be defined rather widely. Another
strange consequence is & = 0, vy = O for g =0, i.e., the satellite
changes the sense of its rotation about it; axis of symmetry reaching

points of greatest B ( = the satellite turns back to the local verticals

these points Bmax exist according to the assumption, that the motion is

bounded).
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The Magnetic Torque Acting on Artificial Satellites (Ref. 135):

This paper gives a general survey of the influence of magnetic fields
on the orientation of satellites. After a remark on the importance of
such magnetic effects first the motion of the angular momentum vector
is discussed. The torques are subdivided into two classes: first-order
perturbations, gravitational and magnetic (for the satellite as magne-
tic dipole) torques, and second-order perturbations as eddy currents,
magnetic hysteresis, atmospheric drag and internal vibration. The latter
are by one or two orders of magnitude smaller, generally. For the case
of a rotationally symmetrical satellite the equation of motion is given:
the gravitational torques again correspond to our specialization in
(6.312); the magnetic torques are split up into two parts, one of which
is due to the permanent magnetic dipole moment of the satellite, and

the other one to the induced dipole moment. Then, the gravitational

and magnetic torques are averaged over (a) one precessional period,(b)
one orbital revolution. By means of results of Explorer XI, Tiros I and
SR I it is shown, amongother conclusions, that this method of averaging
thoroughly yields useful results. In the second part, the decreasing

of the angular momentum due to eddy currents and hysteresis torques is

discussed. Aerodynamic braking torques are neglected.

Untersuchung von magnetisch geregelten, erdnahen Satelliten (Ref. 136) /
Investigations on Magnetically Stabilized Satellites in low Orbits:

In the main, this work is a detailed representation of Ref. 132 by the
same authors. A larger part explains in detail the analytical method
used to solve these linearized equations of motion. By restriction to
deviations from the desired orientation of the satellite (taken as

reference system) small enough, this method can be more effective than
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the numerical integration of the (linearized) equations of motion,
by experience of the authors. Then considerations on the approximate
derivation of the gravitational, aerodynamic and magnetic torques

are given in full detail., For the rest, see under Ref. 132.

Ueber eine Methode zur Loesung des klassischen Vielkoerperproblems

mit Hilfe von Lie-Reihen / On a Method of Solving the Classical
Many-Body Problem Using Lie Series (Ref. 137): The paper starts

with a short explanation of the notion of Lie series and treats then
in (II) the splitting-up of the Lie operator. In (III) general

remarks on the method of recursion formulas follow while (IV) deals

in a detailed manner with the rather simple problem of deriving
recursion formulas for Lie series. (V) gives recursion formulas for
the restricted three body problem. The paper contains some remarks
which we do not understand. For example, on page 222, the unfavorable
influence of a too small step length on the accuracy of the result is
undervalued, obviously. On page 223, we find also some strange ideas:
the author seems to believe (on page 229 he formulated this statement
more precisely) that it is "not possible to give the solution exactly"
by help of the iteration method elaborated. The study of Ref. 9-12
could clarify this misunderstanding. The process of numerical
computation gives also rise to inaccuracies, inevitably, such that

the break-off error is certainly not the only error. Also to page 229:
In principle, one can always take such an approximation function that
only some few iteration steps arec necessary. The same difficulties
appear on page 223, In contrast to these critical remarks, we completely

agree with the remark on the combination of the two methods.
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Our experience concerning the two computation methods in question
may be summarized as follows: Already for simple differential
equations as, e. g., the Mathieu equation (Ref. 6) it is rather
troublesome to code the recurrence formulas and it is possible to
attain the limits of capacity of little computers (e. g., store
capacity). The time needed to compute higher terms by the help of
recurrence formulas may increase very rapidly so that an iterative
method will be throughout competent (it depends upon the quantity
also for "pure algebraic operations”). Moreover the iteration method
provides an error estimation and therefore the possibility of
changing the step length, automatically. If one has no suitable
approximation a combination of recurrence and iteration method will
be advantageous: One avoids the unpleasant repeated application of
the Lie operator, calculates a rather suitable approximation by means
of recurrence formulas and starts the iteration process thereby;
once or two steps may then be enough, generally. The expense in
coding may be expected to correspond to the accuracy of the result,
Sometimes, this procedure can be more effective than the splitting up
of an approach suggested by physical reasons, in spite of its formal

elegance.
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Conclusion

As already mentioned in (6.41) the approximation used by us
probably lies at the lower limit of utilizability. The process of
combining recursion and iteration methods which we proposed there
is supposed to increase the coding input considerably, but it is
very likely that no method of solving the Eulerian gyroscope
equations having such complex moments is free of remarkable troubles,
If the improvements proposed are realized it should, however, be
possible to compute the satellite's motion in a satisfactory way.
Compared to the solution used by us the computer time probably will
be increased in a considerable manner, but this fact should play

a minor part if big computers are used.

If one wants to keep the Eulerian angles unchanged the singu-
larities at g8 = 0 and 8§ = n can be avoided by introducing a second
set of Eulerian angles such that the two axes corresponding to the
singularities are normal to one another; this can, e. g., be
achieved by a simple relabeling of the unit vectors of the systems

of main axes.

The formulas for the influence of the gravitational field on the
satellite's motion, which we have developed in (6.1), are suppoced
to yield these effects exactly enough so as to take account of other
moments, too (see (6.12)). Possibly, also other terms neglected in
the potential formula (VI,14) will play a role, and its series
expansion will only be necessary up to the second term; according to
the above indicated method the series expansion is certainly easy to
perform. Moreover, we want to point to the fact that in the literature

which we reviewed no expansion of g(?) reaching so far could be found.
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